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INTRODUCTION. 

Tamoxifen is the most effective and widely administered drug for the treatment of breast 
cancer, providing improved disease-free and overall survival for approximately 40% of 
breast cancer patients (Gradishar and Jordan, 1998). More recently, it has been shown 
that tamoxifen also serves as a chemopreventive agent for certain women at high risk for 
developing breast cancer (Fisher et al, 1998). Its value as a therapeutic agent is presumed 
to be associated with its ability to function as an ER antagonist (Katzenellenbogen et al, 
1997), and accordingly, the presence of ER in breast tumor biopsy specimens provides 
some degree of certainty in terms of predicting responsiveness to tamoxifen therapy 
(Witliff, 1984). However, one in four patients with ER-positive tumors (15% of all breast 
tumors) for whom tamoxifen is indicated, fail tamoxifen therapy; and one in six patients 
with ER-negative tumors (5 % of all breast tumors), for whom tamoxifen is not currently 
indicated, exhibit objective tumor regression (Witliff, 1984). Moreover, it is not 
uncommon for breast carcinomas that initially respond to tamoxifen to acquire tamoxifen 
resistance, and eventually fail treatment (Katzenellenbogen et al, 1997). Thus, there is an 
urgent need to identify patients capable of responding to tamoxifen therapy from those 
who require alternative treatment modalities. This is particularly true for patients with 
ER-negative tumors since the majority of these patients do not respond to tamoxifen, and 
consequently, they have fewer treatment options. 

GPR30, an orphan G-protein coupled receptor, transmits intracellular signals that regulate 
the mitogen-activated protein kinases, Erk-1 and Erk-2 in breast cancer cells following 
tamoxifen treatment (Filardo et al, 2000, Filardo et al 2002, reviewed in Filardo et al, 
2002). Erk-l/-2 hold particular significance for breast cancer because these kinases are 
commonly hyperactivated in breast carcinoma (Sivaraman et al, 1997); and they are key 
signaling intermediaries for both estrogen and growth factor-dependent pathways. 

BODY. 

Our hypothesis is that low levels of GPR30 expression, or somatic mutations within 
GPR30, may compromise the ability of tamoxifen to regulate Erk-l/-2 activity, and 
correlate with nonresponsiveness to tamoxifen therapy. In the work supported by this 
award, we are testing this hypothesis by comparing the expression of GPR30 and 
Erk-l/-2 activity in archival breast biopsy specimens obtained at first diagnosis (prior to 
treatment) or subsequent to adjuvant therapy. 

GPR30 expression in normal human tissue. 
To evaluate whether GPR30 serves as an indicator for assessing antiestrogen 
responsiveness, we have generated rabbit antibodies directed against peptides derived 
from the deduced amino acid sequence of GPR30 to evaluate the expression of GPR30 
protein in archival, formalin-fixed, tissue specimens. 



Survey of normal human tissues. 
While the work outlined in the original proposal does not specifically state that we would 
investigate GPR30 expression in tissues other than breast, this information is vital to the 
assessment of GPR30 as an estrogen-responsive marker. To this end, we have evaluated 
GPR30 expression in commercially available tissue microarrays (TMAs) (Ambion Inc) 
that contain a multitude of normal human tissues. The results of this survey are presented 
in Table I, with some representative examples shown in Figures 1 and 2. 

In general, our survey indicates that GPR30 is not ubiquitously expressed. High levels of 
GPR30 are detected in female and male reproductive tissues, including mammary 
epithelia (figure lA) and seminal vesicles (figure 2B). Testis and prostate (figure 2A) 
also express strong levels of GPR30. More modest levels of expression are observed in 
kidney (figure 2C) and in pancreas. Hematopoietic tissues (spleen, tonsil, and lymph 
node) are negative. As is skeletal muscle, heart, liver and thyroid. 

These data are likely to indicate that GPR30 action may occur only in a subset of human 
tissues, and provide further specificity regarding the quality assurance of our peptide 
antibodies. 

GPR30 expression in human breast tumor biopsies. 
Preinvasive breast cancer. We reported last year that GPR30 expression is common in 
normal mammary epithelia and in preinvasive breast cancer (figure 3). During this past 
year, by making use of TMAs from the National Cancer Institute Cooperative Breast 
Cancer Tissue Resource (CBCTR), we have extended our analysis of preinvasive breast 
cancer cases. These results are summarized in table II, and include prior cases that we 
have analyzed from Brown University Medical School-affiliated Hospitals. 

To date, we have examined 20 cases of preinvasive breast cancer, including apocrine 
metaplasia, benign hyperplasia, atypical ductal hyperplasia (ADH) and ductal carcinoma 
in situ (DCIS). In the majority of cases (18/20) the level of GPR30 expression detected is 
commensurate with that measured in normal mammary tissue. We did detect 2 cases of 
ductal carcinoma in situ (DCIS) where GPR30 was not detected. Further numbers are 
required, and will be obtained from the NCI CBCTR to fully evaluate GPR30 expression 
in preinvasive breast cancer. 

Invasive ductal carcinoma. Again by use of TMAs from the NCI, we have greatly 
increased the number of tumor specimens that we have been able to attain for the analysis 
of GPR30 expression. To date we have stained, 376 cases of invasive ductal carcinoma 
for GPR30 expression. The value of the CBCTR TMAs is that they are provided in a 
double- blind fashion. Upon receipt of our scoresheet registering GPR30 expression in 
each of the grids of the tissue microarray, the NCI sends back to us a detailed analysis of 
each sample. Included with the histopathological analysis of the samples are 
clinicopathological markers, such as tumor size, node involvement and steroid hormone 
receptor status. 



At the time of this report, clinical data has been received for 188 of the invasive ductal 
carcinoma cases, and these data are correlated with GPR30 expression in table III. In 
general, we have not observed a correlation between GPR30 expression, tumor size, node 
involvement or steroid hormone receptor status. However, we have observed 
heterogeneity in the intensity of GPR30 expression in these cases that appears to be 
independent of clinical parameter. For example, approximately 30% (23/75) of the 
tumors that we have examined that are less than 2 cm lack GPR30, with the remaining 
70% of these samples registering as positives on a scale of +1 to +3. 25% of the node 
negatives (12/50) and 22% of the node positives (11/49) fail to express GPR30, while the 
remaining node positive and node negative cases maintain GPR30 expression. A similar 
trend was observed when' comparing GPR30 expression to steroid hormone receptor 
status. Twenty eight percent of ER+ tumors (27/98) lacked GPR30. By comparison, 27% 
of ER- tumors (15/55) did not express GPR30. These data strongly indicate that GPR30 
expression occurs independently of ER. Representative examples of ER+ and ER- tumors 
that either express or lack GPR30 are shown in figure 4. 

Collectively these data are consistent with our hypothesis that GPR30 may serve as 
an independent marker for assessing antiestrogen responsiveness. 



KEY RESEARCH ACCOMPLISHMENTS. 

1. As a direct consequence of this funding instrument, we have generated 
immunohistochemical data regarding the expression of GPR30 in normal human 
tissue and in a significant number of breast cancer biopsy specimens (greater than 
200). This data will lead to two manuscripts in the upcoming year. An additional 
manuscript has been submitted to the Journal of Cell Biology regarding the cell 
biological role of GPR30. Some of the data presented in these 3 manuscripts have 
been presented at three scientific symposia. Our results concerning the expression of 
GPR30 in human tissue and our studies concerning the biological role of GPR30 
provide the basis for our ongoing collaboration with Procter and Gamble (see 
Reportable Outcomes below). 

2. We have recently made use of tissue microarray (TMA) slides from the National 
Cancer Institute Cooperative Breast Cancer Tissue Resource (CBCTR). A single 
TMA slide contains as many as 200 archival specimens that have been generated 
from 0.6mm core samples of these tissues. TMAs are provided with histopathological 
diagnoses that have been provided by board- certified pathologists that work with the 
National Human Genome Research Institute. Other clinicopathological (tumor size 
and grade, node involvement, distant metastases, etc) and molecular markers (ie ER 
status, HER-2/neu expression) are provided with the TMAs in a double-blind fashion. 
We have had good success with utilizing our GPR30 peptide antibodies on TMAs and 
this tissue resource will greatly facilitate our study and expand the scope of our study. 

3. Employing similar commercially available TMA composed of normal human tissues, 
we have expanded our survey of GPR30 expression. While this information is not 
directly outlined in our proposal, it provides information that is crucial to the 
assessment of GPR30 as a marker of estrogen-responsive tissue. We have assessed 
GPR30 expression in a wide array of normal tissues, including but not limited to: 
male and female reproductive tissues, skeletal bone, brain, hematopoietic tissues, 
tissues from the digestive and urinary system. The results of this survey are listed in 
Table I. Representative examples of GPR30-stained tissues are presented in 1 and 3 in 
the appendix. 

4. We have analyzed 376 breast preinvasive and malignant breast carcinoma specimens 
that were collected on CBCTR TMAs for GPR30 expression. We have sorted GPR30 
expression by tumor size, node involvement, and steroid hormone receptor status 
(ER/PR) and presented in Table III. This analysis extends our previous observations 
based on individual archival breast tumor biopsy specimens acquired from the Rhode 
Island Hospital pathology database (46 cases). Collectively, when these breast tumor 
samples are combined, we find no obvious correlation between any of the classic 
clinicopathological markers and GPR30 expression. This information is consistent 
with our hypothesis that GPR30 may serve as an independent marker for breast 
cancer. Further evaluation of samples from the CBCTR of patients receiving adjuvant 
therapies will help us to determine whether GPR30 has prognostic value in 
determining antiestrogen responsiveness. 



REPORTABLE OUTCOMES. 

1. Publications; 

During the past year (third year of this award), we have generated important 
immunohistochemical data regarding the expression of GPR30 in normal human tissue 
and in a significant number of breast cancer biopsy specimens (greater than 200). This 
data will lead to two manuscripts in the upcoming year. We have submitted an additional 
manuscript to the Journal of Cell Biology regarding the cell biological role of GPR30. 

Manuscripts; 

Filardo, EJ, Quinn, JA, Frackelton, AR, Jr. and KI Bland (2002). Estrogen action via 
the G-protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP- 
mediated attenuation of the EGFR-to-MAP K signaling axis. Molec Endocrinol. 16(1): 
70-84. 

Filardo, EJ. (2002). Epidermal Growth Factor Receptor (EGFR) Transactivation by 
Estrogen via the G-Protein_Coupled receptor, GPR30: a Novel Signaling Pathway with 
Potential Significance for Breast Cancer. J. Steroid Biochem & Molec Biol. 80: 231-238. 

Quinn, JA, Graeber, CT, Calabresi, P, Filardo, EJ (2003) "Inside-out" integrin 
activation by the G-protein-coupled receptor, GPR30, promotes the EGF-like effects of 
estrogen. (Manuscript submitted to J Cell Biol) 

Graeber, CT, Quinn, JA, Kim, D, Steinhoff, MM, Calabresi, P, Filardo EJ (2003) 
Estrogen receptor, ERa and GPR30, a heptahelical receptor that promotes the EGF-like 
effects of estrogen possess different tissue expression patterns, (manuscript in 
preparation). 

Graeber, CT, Quinn, JA, Kim, D, Steinhoff, MM, Calabresi, P, Filardo EJ (2003) 
Expression of GPR30, a G-protein-coupled receptor that promotes the EGF-like effects of 
estrogen, in normal mammary epithelia and invasive mammary carcinoma, (manuscript 
in preparation). 

Book chapter. 

Filardo EJ, Quinn JA, and Graeber CT. (2002) Evidence supporting a role for GPR30, 
an orphan member of the G-protein-coupled receptor superfamily, in rapid estrogen 
signaling. In Membrane-associated Steroid Hormone Receptors pub by Kluwer Press Inc 
and edited by Cheryl S. Watson 



2. Presentations. We were invited to present our work on GPR30 at: 

Division of Cardiovascular Research, Proctor and Gamble Pharmaceuticals, "Expression 
of GPR30 in human tissues", October 8,2002, Mason, OH 

9th Annual T. J. Martell Cancer Consortium, "Regulation of the EGFR by estrogen in 
breast cancer cells", October 18-19, 2002, West Greenwich, RI 

11* Annual International Congress on Hormonal Steroids and Hormones and Cancer in 
Fukuoka, Japan October 21-25, 2002 

3. Research Award 

We continue our work on our Research Scholar Award from the American Cancer 
Society (July 2002- June 2006) entitled "Estrogen Signaling via GPR30". With certainty, 
our ability to write and receive this ACS award was a direct result of the Career 
Development Award supported by the DOD. The ACS grant award will enable us to 
further investigate the mechanism by which GPR30 transactivates the EGFR. It is 
complementary in nature to the studies funded by the DOD to examine GPR30 
expression in human breast biopsy specimens. 

4. Invited Consultant on GPR30 action. 

By invitation of Dr. Jan Rosenbaum, Ph.D., Principal Scientist, Cardiovascular Research, 
Procter & Gamble Pharmaceuticals, I continue to act as a consultant regarding a possible 
role of GPR30 in cardiovascular disease. One direct by-product of our interaction with 
PGP is that we have refined our immunohistochemical staining procedures using GPR30 
peptide antibodies in archival breast biopsy specimens. 

CONCLUSIONS. 

The known estrogen receptors, ERa and ERP, are the best prognostic indicators for 
determining responsiveness to antiestrogen therapy. Still, one in four patients with ER- 
positive tumors do not respond favorably to anti-estrogens, while one in six patients with 
ER-negative tumors exhibit objective tumor regression following antiestrogen therapy 
(Witliff, 1984). These clinical findings, in conjunction with data demonstrating that 
antiestrogens trigger rapid signaling events typically not associated with known ERs 
(Aronica et al, 1994; Lee et al, 2000; Filardo et al, 2000), raises the possibility that 
antiestrogens may, in part, exert their antitumor effects via non ER-dependent 
mechanisms. 

It has long been suspected that other receptors, distinct from the ER, may participate in 
estrogen signaling. However, until recently the physical identity of these receptors has 
remained unknown. Within the past two years, we have provided data demonstrating that 



the G-protein coupled receptor, GPR30, acts independently of known ERs to transmit 
intracellular signals that regulate the EGFR-to-MAP K signaling axis (Filardo et al, 2000; 
reviewed in Filardo, 2002; Filardo et al, 2001). This signaling axis holds particular 
significance for breast cancer in that it is frequently hyperactivated in breast cancer. Since 
antiestrogens also act as GPR30 agonists that regulate EGFR-to-MAP K signaling, the 
studies designed here will enable us to further determine whether there is a link between 
GPR30 expression, Erk hyperactivation and antiestrogen responsiveness. 

From our examination of greater than 400 human breast tumor specimens, we have 
determined that there is no apparent correlation between ER status and GPR30 expression 
in human breast tumors (figure 3) and Table III. These data are consistent with our 
hypothesis that GPR30 may serve as an independent marker for assessing antiestrogen 
responsiveness. 
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Appendices. 

A. Figures 

Figure 1. Detection of GPR30 in normal human breast, thyroid, and hematopoietic 
tissues. Representative examples of archival, formalin-fixed biopsy specimens obtained 
fi-om fi-om normal human breast (A), lymph node (B), thyroid (C), or tonsil (D) that were 
immunostained with rabbit peptide antibodies raised against a C-terminal peptide fi-om 
GPR30. Rabbit GPR30 C-terminal peptide antibodies were used at a 1: 2, 000 dilution 
and were visualized using biotinylated anti-rabbit immunoglobuUn, avidin-conjugated 
horseradishperoxidase, and diaminobenzidine (brown) as substrate. A standard set of 
staining conditions were employed, however notice the differences in the degree of 
GPR30 reactivity in different normal human tissues. All samples were counterstained 
with hematoxylin (blue). 

Figure 2.  Detection of GPR30 in male reproductive tissues, kidney and pancreas. 

Here, we show representative examples of normal prostate (A), seminal vesicle (B), 
kidney (C), or pancreas (D) with affinity-purified rabbit C-terminal GPR30 peptide 
antibodies. The tissue specimen has been counterstained with hematoxylin. 

Figure 3.  Detection of GPR30 in preinvasive breast cancer. 

Archival breast biopsy specimens obtained from patients with preinvasive breast cancer 
were immunostained with GPR30 peptide antibodies. All specimens were counterstained 
with hematoxylin. Representative cases of: (A and D) atypical hyperplasia and (B) solid 
ductal carcinoma in situ (noncomedo) are shown. (C) is an adjacent serial section of (D) 
which has been stained with preimmune antibodies. 

Figure 4. GPR30 expression does not correlate with estrogen receptor, ERa, 
expression in invasive breast cancer. 

Unlike, normal mammary epithelia which appear uniformly positive for GPR30 scoring 
(+3) on a scale of 0 to +3 (as assessed from 6 individual normal mammoplasties), 
invasive ductal carcinoma of the breast exhibit range of GPR30 expression levels. 
Representative examples of archival, formalin-fixed breast tumor biopsy specimens 
obtained from patients with (A,B) ERa-positive (+) or (C, D) ERa-negative (-) invasive 
ductal carcinoma (IDC) are shown above. The ER(+) tumor in (A) scores as (+2) and the 
ER (-) tumor in (C) is (+3). The ER(+) and ER(-) tumors in (B) and (D), respectively, are 
examples of GPR30-negative tumors. 

11 



B. Tables. 

Table I.    GPR30 expression in normal human tissues. 

Table II.   GPR30 expression in preinvasive breast cancer. 

Table III.   Correlation between GPR30 expression and clinicopathological markers 
in human breast tumor biopsy specimens. 

C. Manuscripts. 

Filardo EJ, Quinn JA, Frackelton AR Jr, Bland KI. Estrogen action via the G 
protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP- 
mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling 
axis. Mol Endocrinol. 2002 Jan;16(l):70-84. 

Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via 
the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential 
significance for breast cancer. J Steroid Biochem Mol Biol. 2002 Feb;80(2):231-238. 
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Figure 1. Detection of GPR30 in normal human breast, thyroid, and hematopoietic 
tissues. Representative examples of archival, formalin-fixed biopsy specimens obtained 
from from normal human breast (A), lymph node (B), thyroid (C), or tonsil (D) that were 
immunostained with rabbit peptide antibodies raised against a C-terminal peptide from 
GPR30. Rabbit GPR30 C-terminal peptide antibodies were used at a 1: 2, 000 dilution 
and were visualized using biotinylated anti-rabbit immunoglobulin, avidin-conjugated 
horseradishperoxidase, and diaminobenzidine (brown) as substrate. A standard set of 
staining conditions were employed, however notice the differences in the degree of 
GPR30 reactivity in different normal human tissues. All samples were counterstained 
with hematoxylin (blue). 



Figure 2.  Detection of GPR30 in male reproductive tissues, kidney and pancreas. 

Here, we show representative examples of normal prostate (A), seminal vesicle (B), 
kidney (C), or pancreas (D) with affinity-purified rabbit C-terminal GPR30 peptide 
antibodies. The tissue specimen has been counterstained with hematoxylin. 
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Figure 3.  Detection of GPR30 in preinvasive breast cancer. 

Archival breast biopsy specimens obtained from patients with preinvasive breast cancer were 
immunostained with GPR30 peptide antibodies. AH specimens were counterstained with 
hematoxylin. Representative cases of: (A and D) atypical hyperplasia and (B) solid ductal carcinoma 
in situ (noncomedo) are shown. (C) is an adjacent serial section of (D) which has been stained with 
preimmune antibodies 
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Figure 4. GPR30 expression does not correlate with estrogen receptor, ERa, 
expression in invasive breast cancer. 

Representative examples of archival, formalin-fixed breast tumor biopsy specimens 
obtained from patients w^ith (A,B) ERa-positive (+) or (C, D) ERa-negative (-) invasive 
ductal carcinoma (IDC) are shown above. The ER(+) tumor in (A) scores as (+2) and the 
ER (-) tumor in (C) is (+3). The ER(+) and ER(-) tumors in (B) and (D), respectively, are 
examples of GPR30-negative tumors. 



Table I.       GPR30 expression in normal human tissues. 

Tissue type GPR30 expression" 

Reproductive tissues 

breast +2 
endometrium +2 
ovary +2 
placenta +2 
prostate +2 
seminal vesicle +2 
testis +3 

Hematopoietic tissues 

lymph node 0 
spleen 0 
tonsil 0 

Other tissues 

adrenal gland +2 
kidney cortex +2 
pancreas +2 
appendix 0 
cerebrum 0 
heart 0 
liver 0 
skeletal muscle 0 
thyroid 0 

a GPR30 expression was scored on a scale ranging from 0 to +3. 



Table II.     GPR30 expression in preinvasive breast cancer. 

Tissue tvpe case ER" PR" GPR3(f 

benign hyperplasia 1 + + +3 

apocrine metaplasia 1 + - +2 

atypical ductal hyperplasia 1 + + +3 
(ADH) 2 - - +2 

ductal carcinoma in situ 01-09m + + 0 
(DCIS) 02-09d nd nd 0 

03-03a + nd +1 
04-04b - - +1 
05-04C + + +1 
06-08n - nd +1 
07-15S nd nd +1 
08-16S + + +1 
09-16t nd nd +1 
10-21h + + +1 
ll-03b + + +2 
12-16r + + +2 
13-20g + + +2 
14-gpl + - +2 
15-gp2 - - +2 

a ER/PR status was provided by the National Cancer Institute in a blind 
fashion once GPR30 scores were reported. 

GPR30 expression was scored on a scale ranging from 0 to +3. 



Table III.   Correlation between GPR30 expression and clinico- 
pathological markers in human breast tumor biopsy specimens. 

Tissue tvpe GPR30 score" 

0 +1 +2 +3 total 

Tumor size 

<2    cm 23 26 21 5 75 
2-3 cm 10 26 23 1 60 
3-4 cm 6 10 6 1 23 
>4    cm 1 2 0 0 3 

invasiveness 

node negative 12 22 14 2 50 
node positive 11 22 16 0 49 
distant metastases 18 18 12 6 54 

hormone receptors 

ER+ 27 43 25 3 98 
ER- 15 20 15 5 55 
PR+ 23 28 23 4 78 
PR- 21 33 19 4 67 

^ GPR30 expression was scored on a scale ran gingfromOto+3. 

ER/PR status, node involvement, and tumor size was provided by the 
National Cancer Institute • 



0888-8809/02/$15.00/0 
Printed In U.S.A. 

Molecular Endocrinology 16(1):70-84 
Copyright © 2002 by The Endocrine Society 

Estrogen Action Via the G Protein-Coupled 
Receptor, GPR30: Stimulation of Adenylyl Gyclase 
and cAMP-Mediated Attenuation of the Epidermal 
Growth Factor Receptor-to-MAPK Signaling Axis 
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Estrogen triggers rapid yet transient activation of 
the IVIAPKs, extracellular signal-regulated kinase 
(Erk)-1 and Erk-2. We have reported that this es- 
trogen action requires the G protein-coupled re- 
ceptor, GPR30, and occurs via G/3y-subunit pro- 
tein-dependent transactivation of the epidermal 
grovvth factor (EGF) receptor through the release 
of pro-heparan-bound EGF from the cell surface. 
Here we investigate the mechanism by which Erk- 
1/-2 activity is rapidly restored to basal levels after 
estrogen stimulation. Evidence Is provided that at- 
tenuation of Erk-1/-2 activity by estrogen occurs 
via GPR30-dependent stimulation of adenylyl cy- 
clase and cAMP-dependent signaling that results 
in Raf-1 inactivation. We show that 17/3-E2 re- 
presses EGF-induced activation of the Raf-to-Erk 
pathway in human breast carcinoma cells that ex- 
press GPR30, including MCF-7 and SKBR3 cells 
which express both or neither, ER, respectively. 
MDA-MB-231 cells, which express ER/3, but not 
ERa, and low levels of GPR30 protein, are unable to 
stimulate adenylyl cyclase or promote estrogen- 
mediated blockade of EGF-induced activation of 

Erk-1/-2. Pretreatment of MDA-MB-231 cells with 
cholera toxin, which ADP-ribosylates and activates 
Gas subunit proteins, results in G protein-coupled 
receptor (GPCR)-independent adenylyl cyclase ac- 
tivity and suppression of EGF-induced Erk-1/-2 ac- 
tivity. Transfection of GPR30 into MDA-MB-231 
cells restores their ability to stimulate adenylyl cy- 
clase and attenuate EGF-induced activation of Erk- 
1/-2 by estrogen. Moreover, GPR30-dependent, 
cAMP-mediated attenuation of EGF-induced Erk- 
1/-2 activity was achieved by ER antagonists such 
as tamoxifen or ICI 182, 780; yet not by 17a-E2 or 
progesterone. Thus, our data delineate a novel 
mechanism, requiring GPR30 and estrogen, that 
acts to regulate Erk-1/-2 activity via an inhibitory 
signal mediated by cAMP. Coupled with our prior 
findings, these current data imply that estrogen 
balances Erk-1/-2 activity through a single GPCR 
via two distinct G protein-dependent signaling 
pathways that have opposing effects on the EGF 
receptor-to-MAPK pathway. (Molecular Endocrin- 
ology 16: 70-84, 2002) 

EPIDERMAL GROWTH FACTOR (EGF) receptor 
(EGFR) belongs to a family of transmembrane ty- 

rosine kinase receptors (EGFR/erbBI, HER2/erbB2, 
HER3/erbB3, and HER4/erbB4) that play a critical role 
in regulating normal cell growth and physiology (1). In 
general, EGFRs dictate cellular responses based on 
their ability to activate intracellular signaling cascades 
that effect biochemical events necessary to alter cell 
structure and function. The MAPKs, p42/44 MARK 
[also known as extracellular signal-regulated kinase 
(Erk)-1/-2] are key downstream mediators of EGFR 
function because they phosphorylate and thereby 

Abbreviations: EGF, Epidermal growth factor; EGFR, EGF 
receptor; Erk, extracellular signal-regulated kinase; HB-EGF, 
heparan-bound EGF; GPCR, G protein-coupled receptor; ICI 
182, 780, (7a-[9-[(4,4,5,5,5,-pentafluoropentyl)sulphinyl]nonyl]- 
estra-1,3,5(10)-triene-3,17j3-diol), a high affinity ER antago- 
nist; MBP, myelin basic protein; IVIek, MAPK/ERK kinase 
(same as MAP kinase kinase); SHBGR, a membrane receptor 
on breast and prostate cancer cells. 

modify the function of numerous proteins that collec- 
tively regulate polymerization of the actin cytoskele- 
ton, mobilization of myosin, ceil cycle checkpoints, 
and gene transcription (2). 

Stimulation of the EGFR-to-MAPK pathway is initi- 
ated by the specific binding of cognate ligands, such 
as EGF, TGFa, heregulin, and heparan-bound EGF 
(HB-EGF), to specific EGFRs. This interaction results 
In the formation of EGFR homo- and heterodimers and 
autophosphorylation of tyrosyi residues within their 
cytoplasmic domains. Specific recognition of these 
phosphotyrosines by the adapter proteins Grb-2 
and/or She, and guanine nucleotide exchange factors, 
such as Sos, serves to link-activated EGFR to MARK 
via the monomeric GTPase, p21Ras. Thus activated, 
Ras is capable of recruiting the serine-threonlne ki- 
nase Raf-1, which in turn promotes cascade phos- 
phorylation and activation of Mek-1 and its dedicated 
substrates Erk-1 and Erk-2 (3). Under conditions of 
normal growth and behavior, activation of the EGFR to 
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MARK pathway is transient and attenuated by a variety 
of control mechanisnns, which prevent downstream 
activation of Erk-1/-2 (4), as well as by phosphatases, 
which dephosphorylate, and thereby inactivate, Erk-1/-2 
(5). In contrast, constitutive activation of the EGFR to 
iVIAPK pathway results in dysregulated cellular behaviors 
associated with carcinogenesis (6, 7). 

Several lines of evidence suggest that dysregulation 
of the EGFR to IVIAPK pathway may have particular 
significance for breast carcinogenesis. First, overex- 
pression of the EGFR family member, HER2, is a com- 
mon event in breast tumors (8), an event that is l<nown 
to increase both the amplitude and duration of EGF- 
stimutated Erl<-1/-2 activation (9). Second, Erl<-1- 
mediated phosphorylation of serine residue 118 of the 
ER enhances its gene activation function (10, 11). 
Third, estrogen stimulates activation of Erk-1/-2 (12-15). 
In this regard, constitutive Erk-1/-2 may initiate dysregu- 
lated cellular behaviors exhibited by estrogen-indepen- 
dent tumors; additionally, Erk-1/-2 may also provide a 
mechanism whereby hyperactive growth factor signaling 
may activate estrogen-dependent tumor growth. The as- 
sociation of increased Erk-1/-2 activity with invasive 
breast cancer suggests this hypothesis (16). 

Aside from receptor tyrosine kinases, as repre- 
sented by the EGFRs, G protein-coupled receptors 
(GPGRs) comprise a second major class of transmem- 
brane receptors that signal via Erk-1/-2. Unlike 
EGFRs, GPCRs activate Erk-1/-2 through several dis- 
tinct mechanisms, some of which couple via the mo- 
nomeric GTPases, Ras or Rap; others activate Raf or 
IVlek directly (17). In some instances, GPCR stimula- 
tion leads to the activation of Src-related tyrosine ki- 
nases and the assembly of Grb-2/Sos/Shc complexes 
on the cytoplasmic domain of EGFRs (18). In conjunc- 
tion with the finding that Src can directly phosphory- 
late the EGFR (19), these observations suggest that 
GPCRs may activate EGFRs via Src-mediated phos- 
phorylation of the EGFR cytoplasmic tail. More re- 
cently, ligands for some GPCRs, including endothelin, 
bombesin, and lysophosphatidic acid have been 
shown to transactivate the EGFR through their ability 
to cleave and release surface-associated precursors 
of EGF-related polypeptides (20). These findings par- 
allel observations that other receptors that lack intrin- 
sic enzymatic function, such as integrins (21) and cy- 
tokine receptors (22), also transactivate the EGFR. The 
fact that may different receptors transactivate the 
EGFR to MARK pathway suggests that coordinated 
signaling is required to regulate the activity of this 
commonly used signaling axis. 

Recently, we have shown that GPR30 is required for 
estrogen-Induced activation of the iVIAPKs, Erk-1 and 
Erk-2 (23). This activation response is rapid and occurs 
via Gp-y-subunit protein-dependent release of surface- 
associated HB-EGF and transactivation of the EGF re- 
ceptor. GPRSO-dependent, estrogen-mediated Erk-1/-2 
activation is transient, rapidly returning to basal levels 
10-15 min after initial exposure to estrogen. This rapid 
inactivation of Erk-1/-2 implies the existence of a tightly 

controlled regulatory mechanism. Others have shown 
that estrogen (24-26) also promotes stimulation of ad- 
enylyl cyclase activity and production of intracellular 
cAMP. In some cell settings, cAMP acts as a potent 
inhibitor of Erk-1/-2 activity (27, 28). In other cell types, 
Erk-1/-2 are activated by cAMP via its ability to promote 
B-raf-mediated stimulation of Mek-1 (29). Because 
adenylyl cyciases are commonly linked to GPCRs 
(30, 31) we investigated whether GPR30 participates in 
estrogen-mediated stimulation of adenylyl cyclase. Here, 
we show that GPR30 is required for estrogen-induced 
stimulation of adenylyl cyclase and cAMP-mediated 
inhibition of Erk-1/-2. IVIoreover, we demonstrate that ER 
antagonists, including the antiestrogens tamoxifen and 
7a-[9-[(4,4,5,5,5,-pentafluoropentyl)sulphinyl]nonyl]estra- 
1,3,5(10)-triene-3,17/3-diol (IC1182,780), can also induce 
these same GPRSO-dependent rapid signaling events. 
Our results suggest that estrogens and antiestrogens 
signal via GPR30-mediated stimulation of adenylyl 
cyclase to inhibit the EGFR to MARK pathway. 

RESULTS 

Estrogen-Mediated Stimulation of Adenylyl 
Cyclase Activity Is ER-lndependent and Requires 
the Expression of GPR30 

Estrogen stimulates intracellular cAMP production 
through its ability to activate adenylyl cyclase in the 
plasma membrane via an as-yet-to-be determined 
mechanism (24, 25). Prior studies demonstrating 
estrogen promotes this activity in MCF-7 cells that 
express known estrogen receptors has led to 
the hypothesis that the ER may regulate adenylyl 
cyclase activity (24). More recent data have shown 
that Gas-proteins are required in these cells for 
estrogen-mediated stimulation of adenylyl cyclase (32). 
Traditionally, adenylyl cyclase activity is known to be 
regulated by receptors that couple to heterotrimeric G 
proteins (30). Although the ER has been shown to exist in 
the plasma membrane (33,34), there are no known func- 
tional motifs within the structure of the ER that permit 
Gas protein coupling or activation (35). Because we have 
shown that GPR30 is required for transactivation of the 
EGFR by estrogen (23), we queried whether this recep- 
tor, or the known ERs, promote estrogen-mediated stim- 
ulation of adenylyl cyclase. 

To discriminate between these possibilities, we 
measured the ability of estrogen to stimulate cAMP 
production in membranes isolated from human 
SKBR3 breast cancer cells that express neither ERa 
nor ERjS (36) yet express GPR30 protein (23). SKBR3 
membranes exposed to 17/3-E2 produced substantial 
levels of cAMP (Fig. 1A). This activity was not pro- 
moted by the isomer, 17a-E2. In agreement with the 
observations of Aronica and colleagues (24), demon- 
strating that ER antagonists can stimulate adenylyl 
cyclase activity in MCF-7 membranes, the antiestro- 
gen ICI 182, 780, also stimulated cAMP production in 
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Fig. 1. Estrogen Stimulation of Adenylyl Cyclase Activity Is 
ER Independent and Requires the Expression of GPR30 

Adenylyl cyclase activity was determined from membranes 
prepared from SKBR3 as well as vector- or GPR30-transfected 
MDA-MB-231 human breast cancer cells which were stimulated 
with either cholera toxin (CT) (1 ;u,g/ml) or various concentrations 
of 17/3-E2, 17a-E2, 4-hydroxy-tamoxifen, ICI 182, 780, or pro- 
gesterone. The y-axis values are on a linear scale and represent 
picomoles of cAMP generated per milligram of membrane pro- 
tein per minute. The x-axis values are expressed on a logarith- 
mic scale as the molar concentration of hormone. Each data 
point represents the mean ± the so of quadruplicate samples. 

membranes from SKBR3 cells (Fig. 1 A). In contrast, as 
had been previously noted by others (24), we found 
that membranes from MDA-MB-231 cells that express 
ERj3 but not ERa protein (37) did not generate cAMP 
upon exposure to either 17/3-E2 or ER antagonists 
(Fig. 1B). Nevertheless, cholera toxin, an agonist that 
ADP-ribosylates and directly activates Gas subunit 
proteins, stimulated a 15-fold increase in cAMP in 
MDA-MB-231 membranes, indicating that the MDA- 
MB-231 membrane preparations retained Gas pro- 
teins capable of activating adenylyl cyclase (Fig. 1B). 

Membranes prepared from MDA-MB-231 cells that 
were forced to overexpress GPR30 protein were 
tested for their ability to produce cAMP in response to 
estrogen stimulation. We found that membranes iso- 
lated from GPR30-transfected MDA-MB-231 cells 
supported stimulation of adenylyl cyclase after expo- 
sure to either 17j8-E2, tamoxifen, or ICI 182, 780 (Fig. 
10). The saturation dose for 17p-E2-mediated stimu- 
lation of adenylyl cyclase activity was near 1 )XM, 

whereas approximately 10 nM of 17j3-E2 showed a 
half-maximal response. Half-maximal stimulation was 
achieved with 0.2 jaM IC1182,780, a concentration that 
closely approximates the half-maximal dose for a re- 
sponse of similar amplitude in SKBR3 cells (Fig. 1A). 
No increases in cAMP production were observed in 
MDA-MB-231 (GPR30) membranes treated with 17a- 
E2, an isomer of 17j3-E2 that is unable to support ER 
function. Similarly, the sex steroid hormone proges- 
terone failed to elicit cAMP production from MDA-MB- 
231 (GPR30) membranes. Collectively, these results 
indicate that GPR30 acts independently of the known 
ERs to promote estrogen-mediated stimulation of ad- 
enylyl cyclase. 

Inhibition of PKA Prolongs Estrogen-Induced Erit- 
1 and Erk-2 Activity 

Agents that elevate intracellular cAMP possess either 
stimulate or inhibit Erk-1/-2 activity in different cell types 
(27-29). The ability of cAMP to activate Erk-1/-2 has 
been attributed to the cellular expression of the 95-kDa 
isoforms of B-Raf (29). Therefore, we measured B-Raf 
expression in MDA-MB-231 (GPR30) cells by Western 
blotting (Fig. 2A). Simian SV40-transformed COS-7 kid- 
ney epithelial cells, which undergo Erk-1/-2 activation in 
response to cAMP, expressed elevated levels of both the 
95-kDa and 68-kDa isoforms of B-Raf. In contrast, MDA- 
MB-231 (GPR30) breast cancer cells grown in serum 
expressed the 95-kDa isoform of B-Raf, and little, if any, 
detectable 68-kDa B-Raf (Fig. 2A). However, we found 
that when these cells were serum-starved they failed to 
express detectable levels of 95-kDa B-Raf. This finding is 
consistent with a prior report noting that the 95-kDa 
isoform of B-Raf is inhibited in serum-starved cells (38) 
and suggests that serum-starved MDA-MB-231 (GPR30) 
cells may be refractory to cAMP-dependent activation of 
Erk. To directly test this hypothesis, Erk-1/-2 phosphory- 
lation was measured after exposure of MDA-MB-231 
(GPR30) cells to either cholera toxin or dibutyryl cAMP, a 
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Fig. 2. cAMP Does Not Activate Erk-1/-2 in MDA-IVIB-231 
(GPR30) Breast Cancer Ceils 

A, Fifty micrograms of protein from whole-celi lysates of 
COS-7 celis or MDA-MB-231 (GPR30) ceiis grown in serum, or 
starved, were subjected to Westem blotting with a B-Raf- 
specific antibody tiiat recognizes both^ tPie 95- and 68-kDa 
isoforms. Tlie same filter was reprobed with Erk-2 antibodies to 
confirm equivalent protein loading. B, Serum-starved MDA-MB- 
231 (GPR30) celis were untreated or treated with cholera toxin 
(1 ;ng/ml), dibutyri cAMP (1 mM), 17/3-E2 (1 nM), or EGF (1 ng/ml) 
for various lengths of time (minutes) and lysed In detergent. C, 
Alternatively, cells were preexposed to cholera toxin (1 j^g/ml), 
dibutyri cAMP (1 mM), or left untreated for 30 min and then 
stimulated with EGF (100 ng/ml) for 15 min prior to lysis. Fifty 
micrograms of protein from each detergent lysate was electro- 
phoresed through 15% reducing SDS-polyacrylamlde gels, 
transferred to nitrocellulose, and probed with antibodies spe- 
cific for phosphorylated Erk-1 and -2. The nitrocellulose mem- 
brane was then stripped and reprobed with antibodies that 
recognize total (phosphorylation state-Independent) Erk-2 pro- 
tein. The position of phosphorylated Erk-1/-2 protein or total 
Erk-2 protein are indicated at left. 

membrane-permeable cAMP congener. Although either 
estrogen or EGF induced Erk-1/-2 activation in IVIDA- 
l\/IB-231 (GPR30) cells, neither cholera toxin nordibutyryl 
cAIVIP promoted Erk-1/-2 stimulation (Fig. 2B). However, 
IV1DA-l\/IB-231 (GPR30) cells exposed to either cholera 
toxin or dibutyri cAMP were able to blunt EGF-induced 
Erk-1/-2 activity, suggesting that cAMP antagonizes 

Erk in these cells (Fig. 20). This finding implies that via 
its ability to stimulate adenylyl cyclase, estrogen may 
transmit a cAMP inhibitory signal that acts to attenuate 
estrogen-mediated, transactivation of the EGFR-to- 
Erk signaling axis. 

To investigate whether the restoration of Erk-1/-2 
from peak activity levels to basal levels In MDA-MB- 
231 (GPR30) cells was associated with 17j3-E2- 
induced cAMP-dependent inhibition of Erk-1/-2, we 
determined the effects of KT5720, a cAMP-dependent 
PKA inhibitor on the kinetics of estrogen-mediated 
Erk-1/-2 activation. After stimulation, detergent lysates 
were prepared and Erk-1/-2 activity and expression was 
determined by immunoblotting using phosphorylation 
state-dependent and -independent antibodies. As pre- 
viously reported (23), 17/3-E2-induced a rapid increase in 
the phosphorylation state of Erk-1 and Erk-2 in these 
cells. However, as observed in Fig. 3, the duration of this 
response is transient. Increases in Erk-1/-2 phosphory- 
lation were detected as early as 1 min after exposure to 
17J3-E2. Peak Erk-1/-2 phosphorylation levels occurred 
at 5 min (3- to 4-foid increase) with Erk-1/-2 activity 
returning to baseline levels by 30-60 min. Cells exposed 
to KT5720 for 2 h exhibited reduced basal levels of 
Erk-1/-2 activity relative to untreated control cells. How- 
ever, after estrogen stimulation, the rate and amplitude of 
the Erk-1/-2 activation response in KT5720 pretreated 
cells was similar to that observed in control cells with 
peak activity observed within 5 min. In contrast to un- 
treated control cells, KT5720-treated cells maintained 
elevated levels of Erk-1/-2 activity for an extended period 
of time (greater than 1 h) after estrogen stimulation (Fig. 
3). This observation suggests that activation of cAMP- 
dependent PKA is required to restore estrogen-induced 
Erk-1/-2 activity to basal levels. 

Estrogen Represses EGF-lnduced Erk-1/-2 
Activation Via Its Ability to Generate cAMP 
Via GPR30 

To further assess the mechanism by which estrogen 
inhibits Erk-1/-2 activity, we examined the ability of 
17/3-E2 to suppress EGF-induced Erk-1/-2 phosphor- 
ylation. As described previously (23) and shown in Fig. 
4A, stimulation of quiescent MGF-7 cells (ERa-l-, 
ER)3+, GPR30-I-) with EGF induces substantial (5- to 
10-fold) increases in the phosphorylation state, or ac- 
tivity, of Erk-1/-2 within 15 min. Pretreatment of 
MCF-7 cells with 17j3-E2 for 30 min significantly inhib- 
ited EGF-induced Erk-1/-2 phosphorylation or activity 
(Fig. 4A). This state of E2-induced suppression of 
EGF-induced Erk-1/-2 phosphorylation could be mea- 
sured in cells maintained in 17j3-E2 for as long as 120 
min prior to EGF stimulation. Reprobing these filters 
with phosphorylation state-independent Erk-2 anti- 
bodies verified that these changes in Erk-1/-2 phos- 
phorylation were not due to changes in Erk-2 protein 
expression. To address whether the suppressive ef- 
fect of estrogen on EGF-stimulated Erk-1/-2 activity 
might be due to a delay of the onset of EGF-induced 



74   Mol Endocrinol, January 2002, 16{1):70-84 Filardo ef a/. • Estrogen Action Via a G Protein-Coupied Receptor 

KT5720: 
17^-estradiol(min):o 

ph-Erk-1 -b. 
ph-Erk-2- 

Erk-2 

+    +++     +     + 
0     1      5    15    30    60 

Time (Min) Time (IVIin) 

Fig. 3. Jnliibition of PKA Activation Results in Prolonged Estrogen-Mediated Activation of Erl<-1/-2 
Serum-deprived human MCF-7 breast adenocarcinoma ceiis were pretreated w/ith ttie cAMP congener, KT5270, or veliicle 

before stimulation with 1 nM 17j3-E2 (17/3-E2) for the indicated lengths of time (minutes) and then lysed in detergent. Expression 
of phosphorylated Erk-1/-2 or total Erk-2 protein was determined as described In Fig. 2. The position of phosphorylated Erk-1/-2 
protein or total Erk-2 protein are indicated at left. The data shown are representative of at least three independent experiments. 
Below, Band intensities from this experiment were quantified using NIH Image software. Results were normalized to total Erk-2 
expression in each sample and plotted as arbitrary units. 

Erk-1/-2 activation, Erk-1/-2 phosphorylation was 
measured in MCF-7 cells that were pretreated with 
estrogen and then stimulated with EGF for various 
lengths of time. Basal Erk-1/-2 phosphorylation levels 
were observed in cells that had been pretreated with 
17/3-E2 and subsequently challenged with EGF for any 
of the time intervals tested (Fig. 4B), indicating that 
17/3-E2 did not delay the onset of EGF-induced Erk- 
1/-2 activity in these cells. ER-antagonists, 4- 
hydroxytamoxifen or IC1182, 780 behaved similarly to 
17p-E2 with regards to their ability to attenuate EGF- 
induced Erk-1/-2 phosphorylation (data not shown). 
To determine whether the estrogen-induced suppres- 
sive effect on EGF-induced Erk-1/-2 activity also oc- 
curs via activation of cAMP-dependent PKA, l\/IGF-7 
cells were incubated with KT5720 before exposure to 
tamoxifen and then stimulated with EGF. KT5720- 
treatment completely abrogated tamoxifen-mediated 
attenuation of EGF-induced phosphorylation of 
Erk-1/-2 in these cells (Fig. 5A). No changes were 
observed in the expression of total Erk-2 protein 
in response to KT5720, whereas this treatment 
abolished tamoxifen-mediated repression of EGF- 
induced Erk-1/-2 activity (Fig. 5A). We found that estro- 
gen suppression of EGF-induced Erk-1/-2 was also 
observed in ER-negative SKBR3 cells (Fig. 5B). Repres- 
sion of EGF-induced Erk-1/-2 activity in these cells was 
achieved by not only 17|8-E2 but also the ER-antagonists 
tamoxifen and 101182, 780 (Fig. 58). As was the case for 

MGF-7 cells (Fig. 5A), estrogen-mediated repression 
of EGF-induced Erk-1/-2 activation in SKBR3 cells 
was similarly sensitive to the cAMP congener, 
KT5720 (Fig. 5B). Because KT5720 functions as an 
inhibitor of cAMP-dependent PKA (39), our data 
suggests that PKA-mediated, cAMP-dependent sig- 
naling is necessary for repression of Erk-1/2 activity 
by estrogens and antiestrogens. These findings in- 
dicate that the ER is not required for this estrogen 
suppressor activity. 

To determine whether GPR30 might promote this 
estrogen suppressor activity, we compared the effect 
of estrogen on EGF-induced stimulation of Erk-1/-2 
activity in parental MDA-MB-231 or l\/IDA-MB-231 
cells forced to overexpress GPR30 protein. Upon ex- 
posure to EGF, serum-deprived MDA-MB-231 cells 
exhibited a 3- to 5-fold increase in Erk-1/-2 phosphor- 
ylation and activity (Fig. 6A). Prior exposure to tamox- 
ifen (Fig. 5A) or 17j8-E2 (data not shown) did not inhibit 
EGF-induced stimulation of Erk-1/-2 phosphorylation 
in these cells. However, exposure of these parental 
MDA-MB-231 cells to either dibutyri cAMP or the po- 
tent cAMP agonist, cholera toxin resulted in a dramatic 
reduction of EGF-stimulated Erk-1/-2 activity and 
phosphorylation (Fig. 6A). In contrast, GPR30-trans- 
fected MDA-MB-231 cells expressed the estrogen 
suppressor phenotype. These cells exhibited 20-fold 
less EGF-induced Erk-1/-2 phosphorylation after ta- 
moxifen treatment than mock-transfected MDA-MB- 
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Fig. 4. Attenuation of EGF-lnduced Erk-1/-2 Activity by Estrogen 
Phospho-Erk expression was determined in serum-deprived MCF-7 celis that were exposed to estrogen before EGF- 

stimulation. A, Celis were pretreated with 1 nM 17j3-E2 for various lengths of time (0-120 min) and then stimulated with 100 ng/ml 
EGF for 15 min and lysed in detergent. B, Cells were pretreated with 1 nM 17j3-E2 for 30 min and then stimulated with 100 ng/ml 
of EGF for various lengths of time (1 -60 min) and then extracted in detergent. Expression of phosphorylated Erk-1 /-2 or total Erk-2 
protein was determined as described above. 
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231 cells (Fig. 7). A similar inliibition of EGF-lnduced 
Erk-1/-2 phosphorylation was observed for MDA-MB- 
231(GPR30) cells treated with 17^-E2 (data not 
shown). However, attenuation of EGF-induced Erk- 
1/-2 phosphorylation was not inhibited in IVIDA-MB- 
231 (Gi;'R30) cells exposed to 500 nM of either the 
inactive 17a-E2 isomer or progesterone (Fig. 8). No 
differences were observed between vector- and 
GPR30-transfected MDA-MB-231 cells in total Erk-2 
protein expression under any of these conditions (Figs. 
7 and 8). Thus, collectively these data suggest that the 
cAMP-signaling pathway promoting estrogen-medi- 
ated repression of Erk-1/-2 is intact in l\/IDA-MB-231 
cells, and that these cells are unable to potentiate 
estrogen suppressor activity due to a defect in the 
pathway leading to Gas-subunit protein activation. 
Overexpression of GPR30 protein reconstitutes the 
estrogen suppressor phenotype suggesting that 
GPR30 is required for estrogen-mediated suppression 

of the EGFR-to-MAPK signaling axis. Moreover, these 
data provide specificity for the GPR30-dependent re- 
sponses measured here, and suggest a novel mech- 
anism by which estrogenlc hormones can regulate 
growth factor signaling. 

Attenuation of Estrogen-Induced Erk-1 and Erk-2 
Activity Does Not Effect EGFR Activation 
or Internalization 

We have previously demonstrated that estrogen stim- 
ulation of GPR30-expressing breast carcinoma cells 
results in transactivation of the EGFR through release 
of surface-associated HB-EGF (23). To determine 
whether attenuation of estrogen-induced Erk-1/-2 ac- 
tivity is associated with a decrease in EGFR activity, 
EGFR tyrosine phosphorylation was measured in de- 
tergent lysates prepared from MDA-MB-231 (GPR30) 
cells that were exposed to estrogen for various peri- 
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Fig. 5. Attenuation of EGF-induced Erl<-1/-2 Activity by Es- 
trogens or Antiestrogens Is Abrogated by ttie cAiVIP Conge- 
ner, KT5720 

After a 1 -h exposure to KT5720 (10 JU-M) or veliicle (DMSO), 
MCF-7 ceils (A) or SKBR3 cells (B) were treated with 17/3-E2 
(1 HM), 4-hydroxy-tamoxifen (1 ;aM), or IC1182, 780 (1 ;U,M) for 
30 min and tlien stimulated with EGF (100 ng/ml; 15 min). 
Detergent extracts were prepared and the expression of 
phosphorylated Erk-1/-2 or total Erk-2 protein were deter- 
mined as described previously. Below, Band intensities from 
this experiment were quantified using NIH Image software. 
Results were normalized to total Erk-2 expression in each 
sample and plotted as arbitrary units. 

ods of time. Significant EGFR tyrosine phosphoryla- 
tion was observed as early as 3 min following expo- 
sure to 17^-E2 (Fig. 9A). Comparable amounts of 
tyrosine phosphorylated erbBI/EGFR was observed 
at 60 min after estrogen stimulation (Fig. 9A), even 
though basal levels of phosphorylated Erk-1/-2 are 
present at these later time points (Fig. 3). To further 
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Fig. 6. Tamoxifen-Mediated Attenuation of EGF-lnduced 
Phosphorylation of Erk-1/-2 Does Not Occur in MDA-MB-231 
Breast Carcinoma Cells 

MDA-MB-231 (ERa- ER/3+) breast carcinoma cells vyere 
pretreated with either 1 ^m 4-hydroxytamoxifen (Tarn), 1 
(xg/ml cholera toxin (CT) or 1 mM dibutyri cAMP (dB) for 1 h, 
stimulated with 100 ng/ml EGF for 15 min, and detergent 
lysates were prepared. Expression of phospho-Erk-1/-2 and 
total Erk-2 protein was determined as previously described. 
Erk-1/-2 activity was measured from these lysates by stan- 
dard immune complex kinase assay using MBP as an exog- 
enous substrate. 

investigate whether restoration of Erk-1/-2 to basal 
levels of activity after estrogen stimulation may be the 
consequence of EGF receptor down-modulation, sur- 
face expression of erbBI/EGFR was measured after 
estrogen stimulation (Fig. 98). MDA-MB-231 (GPR30) 
cells were treated with 17/3-E2 or EGF, or pretreated 
with 17/3-E2 for 30 min and then exposed to EGF. After 
stimulation at 37 G, cells were fixed in paraformalde- 
hyde, immunostalned with Ab-1, an ErbBI/EGFR- 
specific monoclonal antibody directed against an 
epitope that maps outside the EGF-binding pocket of 
the receptor, and analyzed by flow cytometry. As ob- 
served In Fig. 9B, exposure of cells to EGF (100 ng/ml) 
for 15 min resulted in a 50% decrease In surface 
EGFR. In contrast, less than a 5% decrease in surface 
EGFR was observed in cells exposed to estrogen for 3, 
10,30, or 60 min. Yet, cells which were pre-exposed to 
17J3-E2, internalized 50% of their surface EGFR within 
15 min subsequent to stimulation with EGF (Fig. 9B). 
Taken together, these data imply that the restoration 
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Fig. 7. Expression of GPR30 in MDA-MB-231 Breast Carci- 
noma Ceils Restores Estrogen-Mediated Repression of EGF- 
Induced Erk-1/-2 Phosphorylation 

Detergent iysates were prepared from vector- or GPR30- 
transfected MDA-MB-231 cells that were unstimulated, EGF 
stimulated, or pretreated with 1 JXM 4-hydroxytamoxifen 
(Tarn) for 1 h before EGF stimulation. Fifty micrograms of 
cellular protein was electrophoresed through SDS-polyacryl- 
amide and transferred to nitrocellulose. Phosphorylated Erk- 
1 /-2 proteins were detected by immunoblotting with phospho- 
Erl<-speciflc antibodies. The membrane was then stripped 
and reblotted with antibodies that detect total Erk-2 protein. 

of estrogen-induced Erk-1/-2 activity to basal levels 
observed by 30 nnin following exposure to estrogen is 
not due to a decrease In EGFR activity or expression 
and suggests that the estrogen-induced blockade of 
Erk-1/-2 activity occurs downstream of the EGFR. 

Estrogen-Mediated Attenuation of EGF-lnduced 
Erk-1 and Erk-2 Activity Is the Result of 
Raf-1 Inactivation 

To better define the mechanism associated with es- 
trogen-mediated repression of EGF-lnduced Erk-1/-2 
activation, we measured the phosphorylation status of 
Mek-1 and the activity of Raf-1, which serve as inter- 
mediate components of the EGFR-to-Erk cascade. 
EGF stimulation of MDA-MB-231 (GPR30) cells in- 
duced rapid Mek-1 phosphorylation (Fig. 9C) and 
Raf-1 activity (Fig. 9D). 17j3-E2 stimulation of these 
cells also induced rapid, yet transient, Mek-1 and 
Raf-1 phosphorylation and activity with a kinetic re- 
sponse that paralleled the activation response ob- 
served for estrogen-induced Erk-1/-2 phosphorylation 
observed in Fig. 3. Both Raf-1 and Mek-1 activation by 
17/3-E2 in this cell background is dependent on 
GPR30 expression (data not shown). Pretreatment 
with 17i3-E2 abrogated both EGF-induced Mek-1 
phosphorylation (Fig. 90) and Raf-1 activation (Fig. 
9D), suggesting that estrogen-mediated repression of 
EGF-induced Erk-1/-2 activity occurs at, or upstream 

of, Raf-1. 

Erk-2 

MDA-MB-231 (GPR30) 
Fig. 8. GPR30-Dependent Attenuation of EGF-lnduced Ac- 
tivation of Erk-1/-2 Does Not Occur in Cells Treated with 
17a-E2 or Progesterone 

Expression of phospho-Erk or total Erk-2 protein was mea- 
sured in detergent Iysates prepared from GPR30-transfected 
MDA-MB-231 breast carcinoma cells that were pretreated 
with either 17/3-E2 (E2j3), 17a-E2 (E2a), or progesterone 
(Prog) for 1 h prior to stimulation with 100 ng/ml EGF for 15 min. 

To further investigate the inhibitory effect of estro- 
gen on the EGFR-to-Erk signaling pathway, we em- 
ployed a Ras affinity assay to measure the ability of 
endogenous Ras-1 to couple to a GST fusion protein 
containing the Ras-binding domain of Raf-1. Raf-1/ 
Ras complexes were detected as early as 3 min fol- 
lowing exposure to estrogen or EGF (Fig. 9E). How- 
ever, these complexes were transient and were no 
longer detected after 30 min of exposure to either 
stimulant. Cells pretreated with a diphtheria toxin mu- 
tant, CRM-197, that sequesters HB-EGF from the cell 
surface (40), abrogated estrogen-mediated activation 
of Ras, demonstrating that extracellular release of HB- 
EGF is necessary for estrogen-induced Ras activity. In 
contrast, cells exposed to estrogen for 30 min, a time 
interval sufficient to stimulate cAMP (Fig. 1) and re- 
store Erk to baseline (Fig. 9E), did not block EGF- 
induced Ras activation yet did blunt EGF-induced 

stimulation of Erk (Fig. 9E). 
Thus, together these data suggest that restoration 

of Erk-1/-2 activity to basal levels in breast carcinoma 
cells stimulated by estrogen or growth factor is 
achieved through GPR30-mediated stimulation of ad- 
enylyl cyclase, which suppresses the EGFR-to-Erk 
pathway through PKA-dependent inhibition of Raf-1 
activity. Furthermore, these data imply that breast tu- 
mors that fail to express GPR30, or produce mutant 
variants of this GPGR that are unable to couple to 
adenylyl cyclase, may no longer be able to effectively 
regulate the EGFR-to-Erk pathway in response to es- 

trogens or antiestrogens. 
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Fig. 9. Inhibition of EGF-lnduced Erk-1/-2 Activity by Estrogen Occurs at the Level of Raf-1 
A, Serum-deprived MDA-MB-231 (GPR30) cells that were untreated or stimulated with EGF or 17]8-E2 for the indicated lengths 

of time (minutes) were lysed in detergent. After Immunoprecipitation with the ErbB1-specific monoclonal antibody, Ab-1, 
tyrosine-phosphorylated EGFR was detected by Immunoblotting with the phosphotyrosine-specific antibody, PY20. EGFR 
recovery was assessed by stripping this nitrocellulose membrane and reprobing with sheep anti-EGFR antibodies. B, EGFR 
surface expression was assessed by flow cytometry using ErbBI-specific antibodies in MDA-MB-231 (GPR30) cells that were 
untreated, exposed to EGF, or pretreated with 17/3-E2 before EGF stimulation. Cells were then fixed in paraformaldehyde and 
Immunostained with the ErbBI-specific monoclonal antibody, 29.1, which reacts with an epitope external to the EGF-ligand 
binding domain on the receptor. Activity of Mek-1 (C) or Raf-1 (D) was measured in detergent lysates prepared from MDA-MB-231 
(GPR30) cells that were untreated, EGF stimulated, or pretreated with 17/3-E2 before EGF stimulation. Mek-1 activity was 
determined from 50 ixg of total cellular protein by probing immunoblots with phospho-Mek-speclfic antibodies. Raf-1 activity was 
assessed in a cascade assay using Immunopurlfied Raf-1, GST-Mek-1, and GST-Erk-1. Erk-1 phosphorylation was measured 
using phospho-specific Erk-1/-2 antibodies. (E) MDA-MB-231 (GPR30) cells were treated with EGF, 17(3-E2, the diphtheria toxin 
mutant, CRM-197 (200 ng/ml), or combinations thereof, for the indicated times and then lysed In detergent. One milligram of 
cellular lysate was Incubated with GST-Rafi RBD fusion protein and analyzed by Western blot for GTP-loaded Ras. P-erk 
expression in these samples was assessed In parallel by blotting with phospho-Erk-specific antibodies. 
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DISCUSSION 

Estrogen exerts its effects on a diverse array of target 
tissues. At present, it is uncertain wliettier all of these 
effects are mediated by the known estrogen receptors, 
ERa and ER^. It has long been appreciated that these 
ERs belong to the steroid hormone receptor super- 
family and function as ligand-activated transcription 
factors (41). Over the past decade, a number of inves- 
tigators have reported that estrogen (12, 15, 24, 42- 
45), and other steroid hormones (46-49) trigger rapid 
intracellular signaling events typically associated with 
membrane receptors that possess intrinsic tyrosine 
kinase activity or couple to heterotrimeric G proteins. 
Previously, we have demonstrated that estrogen acts 
via the GPCR, GPR30, to promote rapid transactiva- 
tion of the EGFR to MAPK pathway through the re- 
lease of pro-HB-EGF (23). Here, we show that through 
GPR30, estrogen stimulates adenylyl cyclase and in- 
hibits Erk-1/-2 activity via a cAMP-dependent mech- 
anism. Together these data demonstrate that estrogen 
signals via GPR30 to trigger opposing G protein- 
dependent signaling mechanisms that act to balance 
Erk-1/-2 activity. This mechanism of GPGR-Erk-1/-2 
regulation is consistent with prior data showing a dual 
regulatory effect on MAPK by a single /3-adrenergic 
receptor (50). 

Here we provide several lines of evidence suggest- 
ing that estrogen-mediated activation of adenylyl 
cyclase occurs independently of known ERs but 
rather requires GPR30 protein. First, the antiestro- 
gens, tamoxifen and IC1182, 780, do not antagonize 
estrogen-induced activation of adenylyl cyclase but 
rather act as agonists capable of stimulating adenylyl 
cyclase activity (Fig. 1). Second, we show that either 
antiestrogens or 17/3-E2 are able to promote activation 
of adenylyl cyclase activity in MCF-7 and SKBR3 
human breast cancer cell lines that express both (37) or 
neither (23, 36) ERa and ERj3, respectively, but do ex- 
press elevated levels of GPR30 protein. Conversely, we 
find that MDA-MB-231 cells that express ER/3, but not 
ERa and express only low levels of GPR30 protein are 
unable to stimulate adenylyl cyclase activity (Fig. IB) or 
mediate cAMP-dependent suppression of the EGFR to 
MAPK pathway (Fig. 6). However, we do show that MDA- 
MB-231 cells forced to overexpress GPR30 are able to 
regulate these activities (Figs. 10 and 7) in response to 
estrogen. 

A requirement for GPR30 in stimulation of adenylyl 
cyclase by estrogen is consistent with studies that 
have implicated GPORs and G proteins in rapid mem- 
brane signaling events mediated by estrogen (32, 33, 
45) and other steroid hormones (47-49). Our finding 
that antiestrogens also promote adenylyl cyclase stim- 
ulation has previously been reported by others who 
demonstrated that ER antagonists, namely tamoxifen 
and ICI 164, 384, could stimulate this activity and 
generate intracellular cAMP in human MCF-7 breast 
cells (24). These investigators also found increased 

levels of cAMP in the uterus of rats injected with either 
estrogen or the aforementioned antiestrogens. In this 
regard, it is noteworthy that prolonged tamoxifen use 
in women has been associated with endometrial hy- 
perplasia (51) and that intrauterine injection of cholera 
toxin has been induces estrogen-like grpwth in the 
uterus of rats (52). Others have provided evidence that 
estrogen induced stimulation of adenylyl cyclase may 
occur via a GPCR-dependent mechanism (26, 32). 
These investigators have shown that SHBG, a serum 
protein that binds circulating estrogen and androgens 
with high affinity, when uniiganded, specifically inter- 
acts with a membrane receptor on breast and prostate 
cancer cells, termed SHBGR. Upon exposure to es- 
trogen or androgens, these preformed SHBG/SHBGR 
complexes bind hormone and stimulate adenylyl cy- 
clase activity (32). Although the molecular nature of 
the SHBG receptor remains unknown, recent data 
demonstrating that: 1) nonhydrolyzable GTP analogs 
inhibit SHBG binding and 2) a dominant negative Gas- 
subunit protein decreases estrogen-induced, SHBG- 
dependent cAMP signaling, indicates that this recep- 
tor may belong to the GPCR superfamily (53). 
Although it is possible that GPR30 may serve as a 
receptor for SHBG, in our experiments, as well as 
those conducted by others (24), no exogenous factors 
are required to initiate estrogen-induced activation of 
adenylyl cyclase. Furthermore, in contrast to the find- 
ings reported for SHBG-mediated estrogen action 
(25), we find that GPR30-dependent activation of ad- 
enylyl cyclase can also be promoted by the antiestro- 
gens, tamoxifen, and ICI 182, 780 (Fig. 10). 

In other cell types, cAMP agonists are known to 
promote stimulation of MAPK activity via activation 
of the monomeric GTPase, Rap-1, which in turn, 
promotes B-Raf-mediated activation of Mek-1 and 
Erk-1/-2 (29). A similar Rap-1 dependent mecha- 
nism is activated in LNCaP prostatic carcinoma cells 
In response to agents that elevate cAMP (54). We 
have found that neither dibutyrl cAMP or cholera 
toxin are capable of inducing rapid activation of 
Erk-1/-2 in MDA-MB-231 (GPR30) cells (Fig. 2B), an 
effect that we show is likely due to the fact that 
these cells down-modulate the 95-kDa B-Raf iso- 
form upon serum starvation (Fig. 2A). We show that 
estrogen-mediated repression of EGF-induced acti- 
vation of the Raf-to-Erk cascade can be reversed by 
the cell permeant cAMP congener, KT5720 (Fig. 3). 
Because this analog irreversibly binds to the regu- 
latory subunits of PKA, and thereby prevents its 
catalytic activation, our data indicate that estrogen 
mediated suppression of the EGFR-to-MAPK cas- 
cade via GPR30 occurs via PKA-dependent signal- 
ing. Other hormones and agonists that elevate 
cAMP are known to oppose activation of the EGFR- 
to-MAPK cascade in many other cell types. Several 
distinct PKA-dependent inhibitory mechanisms 
have been shown to operate. Direct phosphorylation 
of Raf-1 by PKA at serine residues 43 (28, 55) and 
621 (56, 57) have been proposed to be responsible 
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for this inhibitory effect. Still others have provided evi- 
dence that PKA may act upstreann of Raf-1 (58). Here we 
show that estrogen promotes Raf-1 inactivation (Fig. 9D), 
which, in turn, is associated with decreased activity of 
Erl<-1/-2 and its activating kinase IVIek-l (Fig. 9C). Our 
data indicate that this estrogen action does not interfere 
with the ability of Ras to couple to Raf-1 in vitro (Fig. 9E). 
However, we did not explore the possibility that estrogen 
promotes cAMP-dependent signals via GPR30 that pre- 
vent in vivo coupling of Ras to Raf-1. This mechanism of 
GPCR- dependent inhibition of Erk has been associated 
with Rap-1 -dependent sequestration of Raf-1 in HEK293 
cells (59). 

Estrogen-responsive cells employ both serum 
growth factors and estrogen for their growth and sur- 
vival. Coordinated signaling between growth factor 
receptors and estrogen receptors is required for con- 
trolled growth and behavior of normal mammary epi- 
thelium. The discovery that these distinct extracellular 
stimuli utilize common intracellular signaling path- 
ways, as exemplified by the EGFR-to-MAPK signaling 
axis, further emphasizes this concept. Several lines of 
evidence support the concept that the EGFR-MAPK 
signaling axis is a common pathway that is regulated 
by estrogen. EGF-related ligands enhance ER tran- 
scriptional activity (60), and this has been shown to 
result from MAPK-mediated phosphorylation of serine 
118 within the activation function II (ATF-li) domain of 
the ER (10, 11). In this regard, these studies indicate 
that the ER lies downstream of the EGFR-MAPK sig- 
naling axis and may enhance ER-dependent cellular 
growth. Conversely, estrogen has been shown to in- 
crease EGFR expression and activity in the uterus (61, 
62). However, it is important to note that this response 
Is transient, and ultimately, results in the restoration of 
EGFR expression to levels observed before estrogen 
stimulation (63). Studies designed to investigate the 
refractoriness of ER-transfected cells to undergo es- 
trogen-dependent proliferation have demonstrated 
that EGFR signaling must be silenced for estrogen- 
dependent proliferation to occur in these cells (64). 
Others have shown that estrogen can inhibit serum- 
mediated, MAPK-dependent growth of vascular 
smooth muscle cells (65). 

Although our studies indicate that GPR30 may af- 
fect estrogen-mediated regulation of the EGFR-MAPK 
axis, others have also indicated that the ER may pro- 
mote activation of MARK (12-15). A novel functional 
role for the ER in rapid estrogen has also been sug- 
gested from studies that have indicated that the ER 
can engage and promote activation of phosphatidyl- 
inositol 3'OH kinase (66) and PKB/AKT (67). It is note- 
worthy that these downstream signaling effectors lie 
downstream of receptor tyrosine kinases, including 
the EGFR. Although the data presented here and pre- 
viously (23) strongly suggest that GPR30 participates 
in the regulation of the EGFR-to-MAPK signaling axis, 
whether or not GPR30 acts alone or functions as part 
of a receptor complex remains to be determined. 
However, it is worth reiterating that we have demon- 

strated that estrogen is capable of regulating the 
EGFR-to-MAPK signaling axis in SKBR3 breast cancer 
cells that lack ERa as well as ERjS, but express GPR30 
(data presented here and in Ref. 23). It is possible, 
however, in other cell types, GPR30 may form a sig- 
naling complex with the ER, or communicate with the 
ER to promote rapid nongenomic estrogen signaling. 

A schematic diagram depicting a likely mecha- 
nism by which GPR30 may regulate growth factor 
receptor and ER signal transduction pathways is 
shown in Fig. 10. We have previously shown that 
estrogenic hormones and GPR30 act to stimulate 
G/Sy-subunit protein dependent transactivation of 
the EGFR-to-Erk signaling axis through the release 
of proHB-EGF (23). Here, we demonstrate that 
estrogen also stimulates adenylyl cyclase activity 
and cAMP-dependent PKA-mediated suppression 
of the EGFR-Erk pathway. Our model outlines a 
regulatory loop comprised of opposing signals, trig- 
gered by estrogen and requiring GPR30, that serve to 
balance the EGFR-to-Erk pathway. Although our exper- 
iments indicate that these opposing mechanisms can be 
activated by estrogen in vitro, our results raise an inter- 
esting question regarding which one of these opposing 
estrogen-induced signals prevails in breast tumors 
in vivo. Amplification of EGFRs is the most common 
genetic alteration associated with breast cancer and 
is detected in 30% of all breast tumors and primarily 
among those tumors that fail to express ER (8). Likewise, 
dysregulated expression of MARK has been reported to 
be a frequent event in breast cancer (16). However, 
mutations in Ras genes are rarely observed (less than 
5% of all breast cancer cases) even though they occur 
frequently in other carcinomas (68). These data suggest 
that intermediate components of the EGFR-to-Erk cas- 
cade are tightly regulated in normal breast epithelial cells. 
In this regard, genetic alterations that affect signaling 
pathways that attenuate the EGFR-MAPK signaling cas- 
cade, including loss or mutation of GPR30, may be a 
common occurrence in breast cancer. 

The existence of an alternative membrane-localized 
G protein-coupled receptor for estrogen would pro- 
vide a new paradigm by which steroid hormone-acti- 
vated signals interdigitate with growth factor-medi- 
ated signals to regulate the cellular behavior of steroid 
hormone responsive cells. Finally, the identification of 
GPR30 as an important mediator of estrogen action 
may provide further insight into the molecular mech- 
anisms by which breast carcinomas grow and survive. 

MATERIALS AND METHODS 

Cell Culture 

Human MCF-7 (ERa+, ERp+), MDA-MB-231 (ERa-, ERj3+), 
and SKBR3 (ERa-, ER/3-) breast carcinoma cell lines 
were obtained from the American Tissue Culture Collection 
(Manassas, VA). MDA-MB-231 (GPR30) cells are stable 
transfectants expressing GPR30 protein and have been 
described previously (23). Both MCF-7 and SKBR3 cells 
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Fig. 10. Proposed Mechanism by Which Estrogen Acts via GPR30 to Regulate Growth Factor Receptor and ER Signai 
Transduction Pathways 

Data presented here suggest that via GPR30, estrogens as weli as antiestrogens are capable of stimulating adenylyl cyclase 
activity, which in turn, leads to PKA-mediated suppression of EGF-induced Erl<-1/-2 activity. Previously, we have shown that 
estrogen and antiestrogens act via GPR30 to promote EGFR transactivation through a G/3y-subunit protein pathway that 
promotes Src-mediated, metalloproteinase (MlVIP)-dependent cleavage and release of HB-EGF from the cell surface. Thus, via 
GPR30, estrogen may balance Erk-1/-2 activity by stimulating two distinct G protein signaling pathways that have opposing 
effects on the EGFR-to-MAPK axis. 

express elevated levels of GPR30 protein relative to MDA- 
l\/1B-231 cells (23). All cultures were grown in phenol red- 
free DMEM/Ham's F12 media (1:1) supplemented with 
10% fetal bovine serum and 100 /ng/ml gentamicin. MDA- 
MB-231 (GPR30) cells were maintained in the same 
medium supplemented with 500 yxg/ml geneticin (Sigma, 
St. Louis, MO). 

Growth Factors, Estrogens, and Antiestrogens, cAMP 
Agonists, and Congeners 

Recombinant human EGF was purchased from the Upstate 
Biotechnology, Inc. (Lake Placid, NY). Water-soluble 17/3-E2; 
its inactive isomer, 17a-E2; progesterone; 4-hydroxytamox- 
ifen; and cholera toxin were purchased from Sigma. The pure 
ER antagonist, IC1182, 780 was obtained from Tocris Chem- 
icals (Ballwin, MN). Dibutyrl-cAMP was obtained from Roche 
Molecular Biochemicals (Indianapolis, IN) and the cell per- 
meant cAMP congener, KT5720 from Calbiochem (La Jolla, 
CA). The diphtheria toxin mutant, CRM-197, was purchased 
from Berna Products (Coral Gables, FL). 

Antibodies 

The p42/44 MARK antibody that recognizes total Erk-1 and 
Erk-2 protein (phosphorylation state-independent) and phos- 
pho-specific antibodies that recognize either phosphorylated 
Erk-1 and -2 (phospho-Erk), or phosphorylated Mek-1 (phos- 
pho-Mek) were purchased from New England Biolabs, Inc., 
now Cell Signaling Technologies, Inc. (Beverly, MA). The 
Erk-2 antibodies were also purchased from the same vendor 
and are also known to cross react with Erk-1. Monoclonal 
antibodies Ab-1 (Calbiochem) and 29.1 (Sigma) recognize the 
ErbBI/EGFR receptor and do not cross-react with ErbB2 

(Her-2/Neu), ErbB3, orErbB4. Monoclonal antibody 29.1 rec- 
ognizes an epitope external to the ligand binding domain of 
the EGFR and does not interfere with EGF binding. The 
phosphotyrosine-specific monoclonal antibody, PY20, was 
purchased from Transduction Laboratories, Inc., Lexington, 
KY). Raf-1 (C-12) antibodies raised against a peptide from the 
carboxyl terminus of the human Raf-1 protein were pur- 
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz, 
CA). Antibodies that recognize the 95- and 68-kDa isoforms 
of B-Raf (C-19) were purchased from the same vendor. Ras 
monoclonal antibody (clone RAS10) recognizes both the 
Ha- and Ki-Ras isoforms at 21 kDa and was obtained from 
Upstate Biotechnology, Inc. 

Conditions for Cell Stimulation 

Breast carcinoma cells were seeded onto 90-mm Falcon 
tissue culture dishes in phenol-red free DMEM/F12 medium 
containing 10% FCS. The following day, the cell monolayers 
were washed three times with phenol-red free, serum-free 
DMEM/F12, and exchanged for fresh phenol-red free, serum- 
free media on each of the following 3 d. Stimulations of 
quiescent cells were carried out at 37 in serum-free medium 
as described in the figure legends. After stimulation, mono- 
layers were washed twice with ice-old PBS, and lysed in 
ice-cold RIPA buffer (150 mMNaCI, lOOmMTris, pH 7.5, 1% 
deoxycholate, 0.1% sodium dodecyl sulfate, 1% Triton 
X-100, 3.5 mM NaV04, 2 mw phenylmethylsulfonylfluoride, 50 
mM NaF, 100 mM sodium pyrophosphate plus a protease 
inhibitor cocktail; Complete, Roche Molecular Biochemicals). 
Crude lysates were clarified by centrifugation and cellular 
protein concentration was determined using the bichicho- 
ninic acid method according to manufacturer's suggestions 
(Pierce Chemical Co., Rockford, IL). Detergent lysates were 
stores at -70 C until use. 



82   Mol Endocrinol, January 2002, 16(1):70-84 Filardo et al. • Estrogen Action Via a G Protein-Coupled Receptor 

Western Blotting 

Total cellular protein (50 /xg) was boiled in standard Laemmli 
buffer with reducing agents and resolved by SDS-PAGE. 
Proteins were electrotransferred onto nitrocellulose mem- 
branes (0.45 /j,M pore size; Schleicher & Schuell, Inc., Keene, 
NH) using a semi-dry transfer cell (CBS Scientific Co., Del 
Mar, CA) at 1 mA/cm^ for 4 h. Phospho-Erk was detected by 
probing membranes, which were preblocked in Tris-buffered 
saline containing 0.1% Tween-20 and 2% BSA (TBST-BSA), 
with phospho-Erk-speclfic antibodies diluted 1:1,000 in 
TBST-BSA for 1 h at room temperature. Rabbit antibody- 
antigen complexes were detected with horseradish peroxi- 
dase-coupled goat antibodies to rabbit IgG diluted 1:5,000 in 
TBST-BSA and visualized by enhanced chemiluminescence 
(Amersham Pharmacia Biotech, Arlington Heights, IL). Rel- 
ative levels of total Erk-2 protein in each sample were 
detennlned by stripping the phospho-specific Erk rabbit anti- 
bodies from the nitrocellulose membrane and reprobing with 
antibodies to Erk-2. Phosphorylated Mek-1 protein was de- 
tected in much the same manner, except that filters to be 
probed with phospho-Mek antibodies were blocked in TEST 
containing 5% nonfat dry milk and antibodies were delivered 
overnight In TBST-BSA. Apparent molecular weights were 
determined from Rainbow molecular weight standards (Amer- 
sham Pharmacia Biotech). 

Adenylyl Cyclase Activity 

Cells (50 X 10®) were homogenized in 20 ml of 10 mw Tris- 
HCI (pH 7.4), 5 mM EDTA samples were sonicated, and sedi- 
mented twice (1,000 x g for 5 min and 40,000 x g for 20 min). 
The membrane pellet was resuspended at a final concentra- 
tion of 3-5 mg/ml in 75 mM Tris-HCI, pH 7.4, 2 mw EDTA, 5 
mw MgCl2 and stored at - 80 C. Ten micrograms of mem- 
brane protein were added to reactions containing 1 mM ATP, 
50 nM GTP, 0.2 lU pyruvate kinase, 0.1 lU myokinase, 2.5 mM 
phosphoenolpyruvate, and 1.0 mM isobutylmethylxanthine, 
and treated with 17j3-E2, 17a-E2, progesterone, 4- 
hydroxytamoxifen, or cholera toxin for 20 min at 37 C. Re- 
actions were terminated by precipitating the samples with 
ice-cold ethanol. Supernatants were dried and cAMP was 
measured in a competitive ELISA using rabbit cAMP-specific 
antisera (Cayman Biochemicals, Ann Arbor, Ml). 

Detection of Erk-1/-2 and Raf-1 Activity 

Erk-1/-2 activity was measured by standard immune com- 
plex assay utilizing myelin basic protein (MBP) as a substrate. 
Erk-1 and -2 were immunopurlfied from 500 ;Lig of lysate 
using 2 /xg/sample of p42/44 MARK antibody plus 50 /al of a 
50% slurry of protein G-agarose (Pierce Chemical Co.). Erk 
immunoprecipitates were washed twice in 50 mM HEPES (pH 
7.9), 100 mM NaCI and then resuspended in immune complex 
kinase buffer: 25 mM HEPES, pH 7.9,1 mM DTT, 10 mM cold 
ATP, 50 nM 3=P7-ATP (0.25 ;LiCi), and 8 ^ig MBP (Upstate 
Biotechnology, Inc.). After a 30-min incubation at 30 C, 
samples were boiled in standard Laemmli buffer and sub- 
jected to SDS-PAGE. Gels were dried and exposed to Kodak 
XAR film for autoradiography. Raf-1 activity using a kinase 
cascade assay kit, essentially as described by the manufac- 
turer (Upstate Biotechnology, Inc.). Raf-1 was immunopre- 
cipitated from 500 ^ig of lysate using 2 ;j,g/sample of Raf-1 
antibody plus 50 /AI of a 50% slurry of protein G-agarose. 
Raf-1 immunoprecipitates were washed three times in assay 
dilution buffer (20 mM MOPS, pH 7.2; 25 mM j3-glycerol 
phosphate, 5 mM EGTA, 1 mM sodium orthovanadate, and 1 
mM dithiothreitol) and then resuspended in the same buffer 
containing 1 mM ATP, 75 mM MgClj and 0.4 fig of unactivated 
(unphosphorylated) Gst-Mekl protein. After a 30-min incu- 
bation at 30 C, 1.0 fig of unactivated (unphosphorylated) 
Gst-Erk2 was added to this kinase reaction and incubated 

an additional 30 min at the same temperature. The reaction was 
terminated by the addition of boiling standard Laemmli buffer. 
Products of the reaction were separated by SDS-PAGE and 
phosphorylated GST-Erk2 was detected by immunoblotting 
sing phospho-Erk-specific antibodies as described above. 

Affinity Assay for Ras Activation 

Serum-starved cells were stimulated at 37 C for indicated 
times and then immediately lysed in ice-cold MLB lysis buffer 
(25 mM HEPES, pH 7.5, 150 mM NaCI, 1% Igepal CA-630, 
0.25% sodium deoxycholate, 10% glycerol, 25 mM NaF, 10 
mM MgClj, 1 mM EDTA, 1 mM sodium orthovanadate, 10 
ju,g/ml leupeptin, 10 (xg/ml aprotinin). Per the manufacturer's 
specifications, activated Ras was isolated from these lysates 
using GST-RaflBD coupled to glutathione agarose beads 
(Upstate Biotechnology, Inc.). Proteins were eluted from the 
beads by boiling in 2x Laemmli buffer, resolved through 12% 
SDS-polyacrylamide gels and transferred to nitrocellulose. 
Membranes were then blocked in PBS containing 0.05% 
Tween 20 and 5% nonfat dried milk and probed with a Ras 
monoclonal antibody (clone RAS10) overnight at 4 C. Ras 
antibodies were detected using horseradish peroxidase- 
coupled antimouse secondary antibodies and a chemilumi- 
nescent substrate. 

Detection of Pliosphotyrosyl Residues on the EGFR 

Tyrosine phosphorylation of the EGFR was assessed by im- 
munoblotting EGFR immunoprecipitates with phosphoty- 
rosine-specific antibodies. EGFR was immunoprecipitated 
from 250 fig of total cell protein, extracted in RIPA buffer 
using 2 /j,g/sample of the ErbBI-specific monoclonal anti- 
body, Ab-1. EGFR-Ab-1 complexes were precipitated with 50 
fil of a 50% slurry of protein G-agarose (Pierce Chemical 
Co.). EGFR immunoprecipitates were washed, resuspended 
in standard Laemmli buffer containing reducing agents, and 
subjected to SDS-PAGE. After electrophoresis, the immuno- 
precipitated material was then transferred to nitrocellulose 
membranes, blocked with TBST-BSA, and then immuno- 
blotted with the phosphotyrosine-specific monoclonal anti- 
body, PY20. 

EGFR Internalization 

Serum-deprived MDA-MB-231 (GPR30) cells were detached 
in HEPES-buffered saline containing 5 mM EDTA, washed 
twice in phenol red-free DMEM/F12 containing 0.5% BSA 
and resuspended at a concentration of 10^/ml in the same 
buffer in the absence of BSA. One million cells were aliquoted 
into flow cytometry tubes and allowed to equilibrate to 37 C 
in a water bath for 15 min. Samples were either untreated or 
exposed to 1 nM 17^-E2 or 10 ng/ml of EGF for various 
lengths of time at 37 C. After stimulation, cells were fixed by 
adding an equal volume of 8% paraformaldehyde to each 
sample. Cells were collected by centrifugation, washed twice 
in PBS-containing 0.5% BSA (PBS-BSA) and resuspended in 
the same. Fixed cells were incubated with 5 /xg/ml EGFR 
mAB 29.1 for 30 min at room temperature. Cells were then 
washed twice in PBS-BSA, resuspended in the same buffer 
containing a 1:250 dilution of fluorescein isothiocyanate- 
conjugated antimouse IgG antibodies, and incubated for 30 
min at room temperature. Cells were then centrifuged, 
washed, and surface expression was assessed by flow cy- 
tometry using a FACScan instrument. 
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Abstract 

The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible tran- 
scription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) 
and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are 
commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We 
have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled 
receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer 
cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation 
of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously 
unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects 
of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer 
biology are discussed further in this review. © 2002 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Estrogens induce diverse physiological effects. Their 
actions are required for normal development and growth of 
female reproductive tissues and in certain cases, promote 
the growth of tumors that arise from these tissues. In addi- 
tion to their impact on female reproductive tissue, estrogens 
regulate bone integrity [1], cardiovascular function [2] and 
the central nervous system [3]. These physiological and 
pathophysiological responses are manifested by specific 
receptors whose identity has important implications for hu- 
man health and disease. However, the fact that estrogens 
promote a multitude of biochemical actions, some of which 
occur within seconds, others of which are measured over 
several hours, indicates that more than one class of receptor 
may participate in estrogen signaling. 

The first known receptor for estrogen, termed estrogen 
receptor (ER), was described based on its specific binding 
activity in extracts prepared from rat uterus and vagina 
[4]. Since then its protein sequence has been determined 

*Tel.: -I-1-40I-444-5806; fax: -|-i-4401-444-5806. 
E-mail address: edward-filardo@brown.edu (E.J. Filardo). 

[5] and its three-dimensional molecular structure resolved 
[6]. Based on its homology to receptors for other steroid 
hormones, the ER is classified as a member of the steroid 
hormone receptor (SHR) superfamily, which collectively 
functions as hormone-inducible transcription factors [7]. 
Transcriptional activity of the ER is regulated by allosteric 
alterations in its structure induced by estrogen and cofactors 
that associate with the ER. The molecular details concern- 
ing cis and trans regulation of ER functionality have been 
reviewed elsewhere [8,9]. Further complexity regarding ER 
signaling has been provided by the discovery of ER-related 
proteins. The first of these to be described, ER(3, was iso- 
lated from human prostate tissue and has also been shown 
to facilitate estrogen-mediated gene transcription [10]. Last 
year, a third, more distantly related member of the ER fam- 
ily, ER7, was cloned in teleosts [11]. This newest member 
of the ER family exhibits an expression pattern distinct 
from that observed for ERa and ERp [11]. These findings 
provide evidence that at least three SHRs may act in concert 
to promote the effects of estrogen. 

It has long been suspected that other receptors, distinct 
from the ER, may participate in estrogen signaling. This 
theory is borne from the observation that in addition to its 

0960-0760/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. 
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ability to promote gene transcription, estrogen stimulates 
classical second messengers, including cAMP [12,13], inos- 
itol phosphate [14], and calcium [15,16]. More recently, it 
has been shown that estrogen also triggers signaling cascades 
typically linked to membrane receptors that possess tyrosine 
kinase activity or couple to heterotrimeric G-proteins, such 
as mitogen-activated protein kinase (MAP K) [17-19], phos- 
phatidylinositiol 3-OH kinase and AKT/protein kinase B 
[20-22]. These latter effects of estrogen occur more rapidly 
(within seconds to minutes) than gene transcription events 
that are attributed to the ER (over the course of several 
hours). Moreover, unlike ER-mediated gene transcription, 
estrogen-induced second messenger signaling is insensitive 
to inhibitors of gene transcription. Due to the fact that het- 
erotrimeric G-proteins have been shown to be required for 
estrogen-induced second messenger activation, others have 
proposed that estrogen may signal via a G-protein-coupled 
receptor (GPCR) [23-25]. Still others have provided ev- 
idence that ER-related proteins are associated with rapid 
estrogen signaling from the plasma membrane and this 
topic has been reviewed elsewhere [26,27]. 

2. Transactivation of the epidermal growth 
factor receptor (EGFR) by estrogen 

2.1. Background and hutarical perspective 

Both estrogen and EGF are required for the growth and 
survival of estrogen responsive tissues. While these extra- 
cellular stimuli are structurally distinct, they exert physi- 
ological effects that overlap. For instance, both estrogen 
and EGF act as potent mitogens for cells from mammary 
epithelia and uterine endometrium [28]. However, the 
receptors that mediate the effects of estrogen and EGF uti- 
lize seemingly divergent signaling mechanisms. The prolif- 
erative effects of estrogen are primarily mediated by the ER 
and have been linked to its ability to induce gene transcrip- 
tion in these tissues [29]. In contrast, the biological effects 
of EGF are transmitted through transmembrane receptor 
tyrosine kinases (RTKs), known as EGFRs, which signal 
via their ability to recruit intracellular signaling cascades. 

EGFR (ErbBl/HER-l) is the prototypical member of a 
family of four structurally-related RTKs. The other members 
include: ErbB2/HER-2, ErbB3/HER-3, and ErbB4/HER-4 
and together they have been shown to play an integral role 
in the development and growth of the mammary gland and 
uterus [30,31]. Individual EGFRs recognize members of a 
family of small polypeptide ligands that are homologous 
to EGF (amphiregulin; betacellulin; heparan-bound EGF, 
HB-EGF; neuregulins; and transforming growth factor al- 
pha, TGF-a). The exception to this rule is ErbB2/HER-2, 
for which no known physiological ligand exists. It should be 
noted that while EGFR ligands are found in serum, they are 
synthesized as nascent, inactive membrane-anchored precur- 
sors that must be cleaved and released by metalloproteinases 

to generate the active, mature form of the growth factor 
[32]. Upon binding their cognate ligands, EGFRs form ho- 
modimers and heterodimers which results in the activation 
of their intrinsic kinase activity and autophosphorylation of 
specific tyrosine residues within their cytoplasmic domains 
[33]. These phosphotyrosine residues, in turn, serve as nu- 
cleation sites for the recruitment of signal transduction com- 
plexes. Coupling of these complexes to the activated EGFR 
is mediated by phosphotyrosine binding motifs, known as 
SH2 domains. Primary signal transducers may link directly 
to the activated EGFR, as is the case for phospholipase 
C7. Alternatively, effectors with enzymatic activity may be 
bridged to the activated EGFRs via adaptor proteins, such as 
She, Grb-2, the p85-subunit of PI3K, and Gabl. Activated 
EGFR has been shown to recruit molecular signaling com- 
plexes that stimulate MAP K, PI3K, AKT/protein kinase B. 

Data showing that estrogen activates intracellular signal- 
ing events similar to those activated by EGF suggests these 
ostensibly divergent signaling mechanisms may cross-com- 
municate. For example estrogen activates the mitogen-activa- 
ted protein kinases, Erk-1 and Erk-2, signaling intermediaries 
that lie downstream of the EGFR. MAP K as a signaling node 
utilized by estrogen and EGF is supported by prior data that 
showed that the ability of EGF to augment estrogen-induced 
cellular proliferation is linked to MAP K-mediated phos- 
phorylation of the ER [34,35]. More recent work has shown 
that estrogen also activates a variety of signaling networks 
that are coupled to EGFRs, including phosphatidylinositol 
3-OH, AKT/protein kinase B, and endothelial nitric oxide 
synthase [20,21,36,37]. These findings support earlier work 
that indicated interplay between estrogen and EGF. In vivo 
administration of estrogen had been shown to upregulate 
EGFR expression [38,39]. While this was shown to be the 
consequence of ER-mediated gene transcription, other re- 
ports indicated that estrogen could promote rapid EGF-like 
effects. For example intrauterine injection of estrogen in- 
creased the local concentration of EGF [40] and induced 
tyrosine phosphorylation of the EGFR [41]. In this latter 
study, it was also shown that angiotensin II induced EGFR 
autophosphorylation in vitro. This finding was considered a 
novelty at this time since it was already known that neither 
estrogen nor angiotensin II serves as a ligand for the EGFR. 
Recently, it has been demonstrated that angiotensin II trans- 
activates the EGFR through intracellular signals that are 
transduced via its GPCR [42]. Cross-talk between GPCRs 
and EGFRs is not unique to angiotensin II. In fact, many 
ligands that employ GPCRs, namely endothelin, thrombin, 
carbachol, and lysophosphatidic acid, in part, transmit intra- 
cellular signals via their ability to transactivate EGFRs [43]. 

Heterotrimeric G-proteins have been implicated in second 
messenger signaling by estrogen [23,25,44] and thus, 
GPCRs serve as likely candidates to facilitate estrogen- 
induced second messenger signaling. GPCRs transduce their 
signals via G-protein heterotrimers (a^^) that dissociate 
into free Ga-subunit protein and G(37-subunit protein com- 
plexes following ligand stimulation [45]. Classical second 
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messenger signaling is initiated by membrane-associated 
enzymes and ion channels that are regulated by Ga-proteins, 
and for these reasons, they have been implicated in rapid 
estrogen signaling [23-25]. In contrast, GPCR-mediated 
EGFR transactivation often occurs via GP7-subunit signal- 
ing [46]. In that a single GPCR agonist can simultaneously 
promote both Ga- and GP7-dependent signaling [47], the 
hypothesis that a GPCR may participate in rapid estrogen 
signaling is particularly attractive since it provides a singu- 
lar mechanism by which both second messenger signaling 
and EGF-like effects occur. 

2.2. A role for the G-protein coupled receptor 
homologue, GPR30, in EGFR cross-talk 

GPR30, has been cloned by several laboratories [48-53] 
and has been referred to as FEG-1, CMKRL2, CEPR, and 
LyGPR. Its deduced amino acid sequence indicates that it 
exhibits a serpentine, heptahelical structure that is charac- 
teristic of the GPCR superfamily. By structural homology, 
GPR30 most closely resembles receptors for angiotensin II, 
chemokines and other peptide ligands. Due to this homology, 
prior studies suggested that the ligand for this receptor ho- 
mologue is possibly a peptide. An assortment of chemotactic 
peptides, including IL-8, GRO-a, MCP-1, MCP-3, MlP-la, 
C3a, C5a, RANTES, LTB-4 and other peptide ligands, such 
as angiotensin II and angiotensin IV, have been screened and 
shown not to bind to GPR30 [48,50]. GPR30 is widely ex- 
pressed and its mRNA is found in breast, heart, leukocytes, 
brain and vascular endothelium [48-53]. These tissues are 
responsive to the effects of estrogen and it has been noted 
that this expression pattern is consistent with the ability of 
GPR30 to function as a hormone or neurotransmitter. 

Based on the observations that GPR30 is preferentially 
expressed in ER-positive relative to ER-negative breast 
tumor cell lines [49] and that inhibitors of G-protein signal- 
ing block second messenger signaling by estrogen [14,24], 
we queried whether GPR30 may participate in rapid sig- 
naling by estrogen. We found this possibility particularly 
intriguing because others had previously demonstrated that 
estrogen-induced adenylyl cyclase activity in MCF-7 breast 
cancer cells that express GPR30 mRNA but did not stim- 
ulate this activity in MDA-MB-231 cells that express little 
GPR30 mRNA [13]. A similar response pattern is observed 
in these two breast cancer cell lines regarding their ability 
to activate MAP K following exposure to estrogen. MCF-7 
cells undergo estrogen-induced MAP K activation, while 
MDA-MB-231 cells do not [44]. Others have concluded 
that the ability to trigger estrogen-induced Erk activity in 
MCF-7 and other cell types is dependent upon ER-like 
proteins [17,54]. However, we find that estrogen-induced 
Erk activation occurs in human SKBR3 breast cancer cells 
that fail to express either ERa or ERp [55] but make 
GPR30 protein [44]. Yet, this response is not measured in 
MDA-MB-231 cells that express ER|3 but little GPR30 pro- 
tein. Upon transfection with a GPR30 cDNA, MDA-MB-231 

cells overexpress GPR30 protein and acquire the capacity 
to promote Erk activation in response to 17|3-estradiol. 
GPR30-dependent Erk activation is also induced by ER an- 
tagonists, including ICI182,780, but not by 17a-estradiol or 
progesterone [44]. This result provides further evidence that 
this estrogen action occurs independent of the ER. Moreover, 
this finding is consistent with data by others demonstrating 
that pure antiestrogens, such as ICI 164, 384, function as 
agonists with regards to their ability to stimulate adenylyl 
cyclase activity in MCF-7 cells [13]. In contrast, others have 
shown that antiestrogens block estrogen-induced Erk acti- 
vation [17,54]. One likely source of this discrepancy is the 
timing between the addition of the antiestrogen and estrogen 
and the measurement of Erk activity. We find that simulta- 
neous presentation of estrogen and antiestrogen does not in- 
hibit Erk activation. In contrast, cells previously exposed to 
antiestrogen become refractory to other stimuli that activate 
Erk-l/-2, including estrogen or EGF (Filardo and Quinn, 
unpublished data). 

Unlike RTKs, GPCRs signal to Erk via a number of dis- 
tinct signaling pathways, some of which require monomeric 
GTPases, such as Ras or Rap, others activate Raf or Mek 
directly [56]. In some instances, GPCR stimulation leads to 
the activation of Src-related tyrosine kinases and the assem- 
bly of Grb-2/Sos/Shc complexes on the EGFR. In conjunc- 
tion with the finding that Src can directly phosphorylate the 
EGFR [57], these observations suggest the possibility that 
GPCRs may activate EGFRs via Src-mediated phosphoryla- 
tion of the EGFR cytoplasmic tail. Consistent with this idea, 
we have shown that GPR30-dependent, estrogen-induced 
Erk activation occurs via GP7-subunit protein signaling and 
downstream activation of Src-related tyrosine kinases ([44]; 
see Fig. I). This is evidenced by the fact that pertussis toxin, 
G(37-subunit sequestrant peptides, and Src-related tyrosine 
kinase inhibitors all act to blunt estrogen-induced activation 
of Erk. In contrast, none of these inhibitors adversely af- 
fect EGF-stimulated Erk activity in breast cells [44]. While 
this result suggests that GP7-subunit proteins and EGFRs 
utilize distinct mechanisms to stimulate Erk, both signal 
via Ras-dependent Erk activation [58]. More recent data 
indicates that the conversion point between GP7-subunit 
protein and EGFR signaling lies upstream of Ras at the 
level of the EGFR [46,59]. Recently, it has been shown that 
some GPCRs mediate transphosphorylation of the EGFR 
and downstream signaling via metalloproteinase-dependent 
cleavage and release of heparan-bound EGF [43]. Similarly, 
we have shown that estrogen signaling to Erk is depen- 
dent upon transactivation of the EGFR via the release of 
surface-associated HB-EGF [44]. In support of this con- 
cept, we find that estrogen signaling to Erk can be blocked 
by: (i) specific inhibitors of EGFR tyrosine kinase, (ii) neu- 
tralizing HB-EGF antibodies, and (iii) downmodulation of 
proHB-EGF from the cell surface by the diphtheria toxin 
mutant, CRM-197. The fact that these inhibitors completely 
abrogate estrogen-induced EGFR receptor tyrosine phos- 
phorylation indicates that Src must act upstream of HB-EGF 



•   .»  ' 

234 EJ. Filardo/Journal of Steroid Biochemistry & Molecular Biology 80 (2002) 231-238 

„   n   EGFRdimer 
HB-EGF r n 

Fig. I. Transactivalion of the EGFR by estrogen via the G-protein coupled receptor, GPR30, estrogen activates Gp^-subunit/Src family kinase-dependent 
inlracellular signals that promote the release of nascent proHB-EGF from the cell surface. Free, active HB-EGF binds to the EGFR (ErbBl) and facilitates 
receptor dimcrization and downstream activation of the mitogen-activated protein kinases, Erk-1 and -2. 

release and can not directly phosphorylate the EGFR. Acti- 
vation of an HB-EGF autocrine loop via GPR30-dependent, 
estrogen signaling provides a novel mechanism by which 
estrogen may promote EGF-like effects. 

More than one GPCR may promote rapid estrogen signa- 
ling. The membrane receptor for sex hormone binding 
globulin (SHBG), a plasma protein that binds estrogen, 
provides one such possibility. Via the SHBG receptor, 
estrogen promotes Gas-mediated activation of adenylyl 
cyclase [60]. However, the SHBG receptor appears to be 
distinct from GPR30. Fir.st, exogenous SHBG is not re- 
quired for GPR30-dependent activation of the EGFR to Erk 
signaling axis [44]. Secondly, while antiestrogens promote 
GPR30-dependent transactivation of the EGFR, they do 
not function as agonists for SHBG-mediated stimulation 
of adenylyl cyclase. While these observations indicate that 
more than one GPCR may participate in rapid estrogen 
signaling, it is likely that further complexity in estrogen- 
mediated GPCR signaling may occur due to coupling of 
different G-protein heterotrimers with the same receptor. 
For example while Gaq-, Gas-, and Gai-coupled receptors 
signal to Erk-l/-2, they may also promote signals in parallel 
that are independent of Erk-l/-2 activation [56]. For exam- 
ple estrogen regulates inositol pho,sphate [14], as well as 
calcium mobilization [54] or influx [25]. Others have noted 
that mobilization of intracellular calcium precedes MAP K 
with no apparent increa.se in inositol triphosphate in human 
MCF-7 breast cancer cells [54]. We did not measure whether 
or not calcium was required for estrogen-induced trans- 
activation of the EGFR or downstream activation of Erk. 
Evidence exists indicating that via its GPCR, angiotensin II 
may promote either calcium-dependent [61] or -independent 

[62] EGFR transactivation in different cell types. Thus, it 
is important to consider whether GPR30-mediated EGFR 
transactivation and second messenger signaling may be cell 
context specific. The observation that cell activation status 
promotes differentia] coupling of heterotrimers to the same 
receptor [63], further suggests this possibility. 

Transactivated EGFRs recruit signaling complexes other 
than the Ras-to-Erk pathway. For example the EGFR tyro- 
sine kinase inhibitor, AG-1478, abrogates the ability of 
lysophosphatidic acid to mediate G(37-subunit protein- 
dependent activation of PI3K [64]. In this regard, it is 
noteworthy that estrogen-induced activation of PI3K has 
been observed in HUVECs [21] and that these cells express 
GPR30 [53]. Nitric oxide production by HUVECs has been 
associated with a signaling pathway that involves PI3K 
and AKT-mediated phosphorylation of eNOS [21]. It is 
important to point out, however, that PI3K does not neces- 
sarily lie downstream of the EGFR and that both Gai- and 
Gaq-coupled receptors have been shown to signal directly 
to PI3K [65,66]. Heterodimerization of EGFRs provides 
another means to extend the effects of GPCR-mediated 
transactivation because it is known that each EGFR family 
member has unique signaling properties. ErbB3 is a par- 
ticularly interesting example, since this receptor encodes 
multiple binding sites for the regulatory subunit of PI3K 
and thus, recruits PI3K efficiently; yet, this receptor lacks 
tyrosine kinase activity [67]. In contrast, canonical bind- 
ing sites for the regulatory subunit of PI3K are not found 
on ErbBl, however, this receptor stimulates PI3K [68]. 
Upon presentation with EGF ligands, cells that coexpress 
ErbBl and ErbB3, form heterodimers which efficiently re- 
cruit PI3K [69]. More recently, it has been appreciated that 
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ErbBl employs the docking protein Gabl to recruit PI3K 
and thereby provides a mechanism to recruit this signal- 
ing enzyme in cells that lack ErbB3 [70,71]. Additionally, 
the ErbBl adapter, She, recruits PI3K by assembly of a 
Shc-Grb2-Gab2-PI3K complex [72]. 

3. Significance for breast cancer biology 

Estrogen induces EGF-like effects in vivo [28] and prior 
data has indicated that the EGFR may be a vehicle for 
estrogen action. Approximately, a decade ago, it was 
demonstrated that intrauterine administration of estradiol 
resulted in increased concentrations of EGF [40] and EGFR 
autophosphorylation [41]. Further, evidence of a relation- 
ship between the EGFR and estrogen was provided by 
data showing that neutralizing antibodies to EGF inhib- 
ited estrogen-mediated proliferation in the uterus [73]. Our 
data indicates that estrogen-mediated transactivation of the 
EGFR occurs independently of the ER and requires GPR30 
[44]. This novel mechanism of estrogen action may have 
profound implications with regards to our understanding of 
the biology and treatment of breast cancer. 

Amplification of EGFR family members is the most 
common genetic alteration associated with breast cancer. 
Overexpression of HER-2/neu occurs in approximately 
one-third of all breast tumors, the majority of which fail to 
express ER [74]. However, its importance in breast cancer 
may occur early in disease, as indicated by the fact that el- 
evated HER-2/neu is observed in roughly 60% of all cases 
of ductal carcinoma in situ (DCIS) [75]. Since the majority 
of DCIS occurs in women prior to menopause, it has been 
speculated that the expansion of precancerous cells is the 
result of mitogenic coupling between EGF and estrogen. In 
that overamplified EGFRS undergo ligand-dependent sig- 
naling responses. This hypothesis is particularly interesting, 
especially in light of the fact that elevated concentrations of 
EGF ligands and matrix metalloproteinases [76] have been 
detected in breast cancer. In this regard, it is tempting to 
speculate that estrogen may promote EGFR transactivation 
events in vivo. Based on the fact that EGFRs extend their 
signaling capacity due to their ability to form heterodimers, 
and that all four EGFRs are expressed in mammary epithe- 
lia, GPR30-mediated transactivation of the EGFR may have 
particular significance for breast cancer. ErbB2 provides 
an interesting example of possible cross-signaling between 
EGFR members. ErbB2, is an orphan receptor that has no 
known physiological ligand. However, ErbB2 is strongly 
activated through its interactions with other EGFRs and 
it is favored over other heterodimers or homodimers [77]. 
HER-2 has been shown to increase both the amplitude 
and duration of MAP K activation by EGF ligands [78]. 
In this regard, recruitment of HER-2 by GPR30 provides 
a possible mechanism by which estrogen couples to the 
EGFR-to-MAP K signaling pathway. Frequent detection of 
elevated levels of phosphorylated MAP K in breast cancer 

is consistent with the hypothesis that hyperactivation of 
the EGFR-to-MAP K signaling axis is achieved by both 
estrogen-dependent and -independent mechanisms [79]. 

Full activation of ER transcriptional activity requires 
MAP K-mediated phosphorylation at serine 118 within the 
ATF-I domain of the ER. Phosphorylation at this site is pro- 
moted by EGF [34,35] and estradiol [80]. Prior observations 
indicate that estrogen promotes, in parallel, second messen- 
gers, activation of intracellular signaling enzymes, and gene 
transcription. Our data indicates that via GPR30, estrogen 
may, in turn, regulate or "prime" the transcriptional activity 
of the ER. Constitutive Erk activation achieved as a result of 
mutation or excessive growth factor stimulation may result 
in chronic phosphorylation of serine 118 of the ER, thereby 
facilitating hyperactive estrogen-dependent tumor cell pro- 
liferation. In this regard, it is interesting to consider that 
breast tumors that express low levels of ER, yet maintain 
GPR30, may maintain some ER function as a consequence 
of extrinsic or intrinsic events that hyperactivate Erk. EGFR 
transactivation via GPR30 provides a mechanism by which 
ER-negative tumors that maintain GPR30 expression may 
remain responsive to estrogen. 

The presence of the ER is the most important parameter 
in predicting improved disease-free survival and respon- 
siveness to antiestrogen therapy [81]. These clinical data 
support research studies that have demonstrated that antie- 
strogens act as ER antagonists by competitively blocking 
estrogen binding sites on the ER [82]. Still, one in four 
patients with ER-positive tumors do not respond favorably 
to antiestrogens, while one in six patients with ER-negative 
tumors undergo objective tumor regression following antie- 
strogen therapy [81]. These observations indicate an alter- 
native mechanism for estrogen action. Further support for 
this concept comes from the fact that prolonged tamoxifen 
use is associated with endometrial hyperplasia [83] and that 
this antiestrogen, and others, also behave as agonists in vitro 
[13,44,84,85]. Our finding that the antiestrogens, tamoxifen 
and ICI 182, 780 promote GPR30-dependent transactiva- 
tion of the EGFR is consistent with studies showing that 
steroids and their antihormones may act through membrane 
receptors and heterotrimeric G-proteins [25,86,87]. Future 
studies will define the role of GPR30 in breast cancer biol- 
ogy. These efforts will also determine its value in refining 
our ability to predict responsiveness to antiestrogen therapy 
and will determine whether GPR30 constitutes a valuable 
therapeutic target in breast cancer. 

4. Conclusions 

Estrogen triggers rapid activation of classical second 
messengers and intracellular signaling events that lie down- 
stream of EGFRs. The recent recognition that GPCRs trans- 
duce signals, in parallel, which stimulate second messengers 
and activate EGFRs, suggests that GPCRs are well-suited 
as candidates to facilitate nongenomic estrogen signaling. 
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Our data demonstrates that the orphan receptor GPR30 
may serve such a role. We have reported that independent 
of ERa and ER3, estrogen transactivates the EGFR-to-Erk 
signaling axis via GPR30-dependent activation of an 
HB-EGF autocrine loop. Our data implies that GPR30 may 
have particular significance for the growth and survival of 
estrogen-negative breast tumors. Breast tumors that fail to 
express ER but maintain GPR30-dependent EGFR trans- 
activation may remain estrogen responsive by employing 
growth factor dependent intracellular signaling pathways. 
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